Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often...Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often lack of capability in separating the foreground and background.This paper proposes an anchor-free method named probability-enhanced anchor-free detector(ProEnDet)for remote sensing object detection.First,a weighted bidirectional feature pyramid is used for feature extraction.Second,we introduce probability enhancement to strengthen the classification of the object’s foreground and background.The detector uses the logarithm likelihood as the final score to improve the classification of the foreground and background of the object.ProEnDet is verified using the DIOR and NWPU-VHR-10 datasets.The experiment achieved mean average precisions of 61.4 and 69.0 on the DIOR dataset and NWPU-VHR-10 dataset,respectively.ProEnDet achieves a speed of 32.4 FPS on the DIOR dataset,which satisfies the real-time requirements for remote-sensing object detection.展开更多
A system of on-line contamination detecting in hydraulic oil based on silting principle is accomplished, where, metal filter membrane as detector, solenoid as active force to propel piston to blotter and gain differen...A system of on-line contamination detecting in hydraulic oil based on silting principle is accomplished, where, metal filter membrane as detector, solenoid as active force to propel piston to blotter and gain differential pressure, step motor drives the membrane to filtrate and counter-flush, LabVIEW as detecting software platform, oil's contamination detecting indirectly by gauging differential pressure. Based on theory analysis, accomplished is relation between contamination level and differential pressure, realizing polynomial curve fitting, and calibration experiment. Field experiment is simulated in the condition of experimental laboratory, has credible precision and real-time performance, which can popularize to the field of production.展开更多
Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure....Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure. Therefore the hydrocarbon must spread and move vertically to the surface along the pressure gradient orientation. Hydrocarbons in the reservoir along some small rifts, cracks, joints and cleavages penetrate the overlying strata and seepage onto the surface. Thus the hydrocarbons become unvisble oil and gas signs. This process is called the phenomena of hydrocarbon microseepage of reservoir. Hydrocarbons microseepage in the process展开更多
Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away fr...Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.展开更多
Maize tassel detection is essential for future agronomic management in maize planting and breeding,with application in yield estimation,growth monitoring,intelligent picking,and disease detection.However,detecting mai...Maize tassel detection is essential for future agronomic management in maize planting and breeding,with application in yield estimation,growth monitoring,intelligent picking,and disease detection.However,detecting maize tassels in the field poses prominent challenges as they are often obscured by widespread occlusions and differ in size and morphological color at different growth stages.This study proposes the SEYOLOX-tiny Model that more accurately and robustly detects maize tassels in the field.Firstly,the data acquisition method ensures the balance between the image quality and image acquisition efficiency and obtains maize tassel images from different periods to enrich the dataset by unmanned aerial vehicle(UAV).Moreover,the robust detection network extends YOLOX by embedding an attention mechanism to realize the extraction of critical features and suppressing the noise caused by adverse factors(e.g.,occlusions and overlaps),which could be more suitable and robust for operation in complex natural environments.Experimental results verify the research hypothesis and show a mean average precision(mAP_(@0.5)) of 95.0%.The mAP_(@0.5),mAP_(@0.5-0.95),mAP_(@0.5-0.95(area=small)),and mAP_(@0.5-0.95(area=medium)) average values increased by 1.5,1.8,5.3,and 1.7%,respectively,compared to the original model.The proposed method can effectively meet the precision and robustness requirements of the vision system in maize tassel detection.展开更多
The accuracy of change detection on the earth’s surface is important for understanding the relationships and interactions between human and natural phenomena. Remote Sensing and Geographic Information Systems (GIS) h...The accuracy of change detection on the earth’s surface is important for understanding the relationships and interactions between human and natural phenomena. Remote Sensing and Geographic Information Systems (GIS) have the potential to provide accurate information regarding land use and land cover changes. In this paper, we investigate the major techniques that are utilized to detect land use and land cover changes. Eleven change detection techniques are reviewed. An analysis of the related literature shows that the most used techniques are post-classification comparison and principle component analysis. Post-classification comparison can minimize the impacts of atmospheric and sensor differences between two dates. Image differencing and image ratioing are easy to implement, but at times they do not provide accurate results. Hybrid change detection is a useful technique that makes full use of the benefits of many techniques, but it is complex and depends on the characteristics of the other techniques such as supervised and unsupervised classifications. Change vector analysis is complicated to implement, but it is useful for providing the direction and magnitude of change. Recently, artificial neural networks, chi-square, decision tree and image fusion have been frequently used in change detection. Research on integrating remote sensing data and GIS into change detection has also increased.展开更多
There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge ...There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
Remote sensing techniques are proven methods for quantifying chlorophyll-a levels by inference algal concentrations in reservoirs. One traditional method is to use Landsat imagery and field data from a limited time pe...Remote sensing techniques are proven methods for quantifying chlorophyll-a levels by inference algal concentrations in reservoirs. One traditional method is to use Landsat imagery and field data from a limited time period to develop a model for a reservoir which relates reflectance in various bands to measured algal (or chlorophyll-a) concentrations and use that model and associated imagery to determine spatial algal concentrations in the reservoir. In this work, we extend these techniques to use historical Landsat data over long time periods to develop seasonal models that will more accurately describe the conditions throughout the growing season. Previous work at Deer Creek included the development of a chlorophyll-a model using data from the months of August to September. This model did not account for seasonal variation and algal succession, which affects the relationship between measured reflectance and algal concentration. Early summer algal blooms are dominated by diatoms (yellow-brown), while the algae vary from chlorophyta (green) in the mid-summer to cyanobacteria (blue-green) in late summer months. This study presents and explores the development and use of seasonal algorithms based on reflective characteristics of various algal communities to create a more accurate model for the reservoir. This study uses water quality data collected over a 20-year period during non-ice conditions along with associated Landsat data. As the field measurements were not taken to support remote sensing measurements, this study evaluates the use of historical data to support remote sensing analysis. It is assumed that reservoir conditions do not change rapidly, the field data can be used to develop correlations with satellite imagery taken within a day of the field measurements, and the seasonal algal communities have different reflective properties (or colors). We present statistical analysis that shows the seasonal algorithms better fit the data than the non-seasonal model and the traditional model calibrated with late-season data. We recommend the use of sub-seasonal algorithms to more accurately model and predict water quality throughout the growing season.展开更多
The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the la...The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.展开更多
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usua...In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering.展开更多
Algae blooms pose a threat to water quality by depleting oxygen during decomposition and also cause other issues with water quality and water use. Algae biomass is traditional monitored through field samples analyzed ...Algae blooms pose a threat to water quality by depleting oxygen during decomposition and also cause other issues with water quality and water use. Algae biomass is traditional monitored through field samples analyzed for chlorophyll-a, a pigment present in all algae. Field sampling can be time- and cost-intensive, especially in areas that are difficult to access and provides only limited spatial coverage. Estimations of algal biomass based on remote sensing data have been explored over the past two decades as a supplement to information obtained from limited field samples. We use Landsat data to develop and demonstrate seasonal remote sensing models, a relatively recent method, to evaluate spatial and temporal algae distributions for the Jordanelle Reservoir, located in north-central Utah. Remote sensing of chlorophyll as a monitoring and analysis method can provide a more spatially complete representation of algae distribution and biomass;information that is difficult to obtain using point samples.展开更多
alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the ...alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, which leads to great potential to perform salient object detection for remote sensing images. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise contrast. With the recent use of deep learning framework, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental results using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% improvement compared with the state-of-the-art methods.展开更多
For the issue of nuclear radiation detection,this paper designs a remote control nuclear radiation detector which can trace a pre-determined route,avoid obstacles effectively,and can be controlled remotely by users wi...For the issue of nuclear radiation detection,this paper designs a remote control nuclear radiation detector which can trace a pre-determined route,avoid obstacles effectively,and can be controlled remotely by users wirelessly or through voice command.It can effectively replace manual probing due to convenience,flexibility and safety.The system mainly consists of a nuclear detection module,a voice control module,a route tracing module,an obstacle avoidance module,a data transmission module,storage and a display module,and a D.C.machine.An MSP430 microcontroller is used as a control chip to control the motor and the system uses infrared technology and ultrasonic sensors to achieve intelligent tracing and obstacle avoidance.Moreover,it applies a voice module and data transmission module to remotely controlling the device.The radiation data is shown on an LCD screen.展开更多
In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by comb...In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by combining the edge detecting with the multi-resolution analyzing of the wavelet transform. Via the dyadic wavelet decomposing, the RS image of a certain appropriate scale is obtained, and the edge data of the plane and the upright directions are respectively figured out, then the gradient vector module of the surface features is worked out. By tracing them, the authors get the edge data of the object, therefore build the RS image which obtains the checked edge. This method can depress the effect of noise and examine exactly the edge data of the object by rule and line. With an experiment of an RS image which obtains an airport, the authors certificate the feasibility of the application of dyadic wavelet in the object edge detection.展开更多
A new edge detector based on the nonlinear intensity of curved surface was proposed. The edge detector describes the largest curvature and the smallest curvature of curved surface, therefore it can reflect the real la...A new edge detector based on the nonlinear intensity of curved surface was proposed. The edge detector describes the largest curvature and the smallest curvature of curved surface, therefore it can reflect the real largest direction of image edge jump. By the new edge detector, it is convenient to calculate the curvature in any direction of the curved surface and the curvature can be used in the identification of edge direction and the feature extraction of objects on remote sensing image.展开更多
On-line chatter detection can avoid unstable cutting through monitoring the machining process.In order to identify chatter in a timely manner,an improved Support Vector Machine(SVM)is developed in this paper,based on ...On-line chatter detection can avoid unstable cutting through monitoring the machining process.In order to identify chatter in a timely manner,an improved Support Vector Machine(SVM)is developed in this paper,based on extracted features.In the SVM model,the penalty factor(e)and the core parameter(g)have important influence on the classification,more than from Kernel Functions(KFs).Hence,first the classification results are conducted using different KFs.Then two methods are presented for exploring the best parameters.The chatter identification results show that the Genetic Algorithm(GA)approach is more suitable for deciding the parameters than the Grid Explore(GE)approach.展开更多
The valuation relation of potential difference with discharging time in Electrical Discharge Machining (EDM) is analyzed theoretically and tested and verified by experiments designed in this paper and the relation bet...The valuation relation of potential difference with discharging time in Electrical Discharge Machining (EDM) is analyzed theoretically and tested and verified by experiments designed in this paper and the relation between potential difference and spark location is induced and analyzed, and proceed by experiments under the condition of onedimension.展开更多
Most known mineral deposits were discovered by accident using expensive,time-consuming,and knowledgebased methods such as stream sediment geochemical data,diamond drilling,reconnaissance geochemical and geophysical su...Most known mineral deposits were discovered by accident using expensive,time-consuming,and knowledgebased methods such as stream sediment geochemical data,diamond drilling,reconnaissance geochemical and geophysical surveys,and/or remote sensing.Recent years have seen a decrease in the number of newly discovered mineral deposits and a rise in demand for critical raw materials,prompting exploration geologists to seek more efficient and inventive ways for processing various data types at different phases of mineral exploration.Remote sensing is one of the most sought-after tools for early-phase mineral prospecting because of its broad coverage and low cost.Remote sensing images from satellites are publicly available and can be utilised for lithological mapping and mineral exploitation.In this study,we extend an artificial intelligence-based,unsupervised anomaly detection method to identify iron deposit occurrence using Landsat-8 Operational Land Imager(OLI)satellite imagery and machine learning.The novelty in our method includes:(1)knowledge-guided and unsupervised anomaly detection that does not assume any specific anomaly signatures;(2)detection of anomalies occurs only in the variable domain;and(3)a choice of a range of machine learning algorithms to balance between explain-ability and performance.Our new unsupervised method detects anomalies through three successive stages,namely(a)stage Ⅰ–acquisition of satellite imagery,data processing and selection of bands,(b)stage Ⅱ–predictive modelling and anomaly detection,and(c)stage Ⅲ–construction of anomaly maps and analysis.In this study,the new method was tested over the Assen iron deposit in the Transvaal Supergroup(South Africa).It detected both the known areas of the Assen iron deposit and additional deposit occurrence features around the Assen iron mine that were not known.To summarise the anomalies in the area,principal component analysis was used on the reconstruction errors across all modelled bands.Our method enhanced the Assen deposit as an anomaly and attenuated the background,including anthropogenic structural anomalies,which resulted in substantially improved visual contrast and delineation of the iron deposit relative to the background.The results demonstrate the robustness of the proposed unsupervised anomaly detection method,and it could be useful for the delineation of mineral exploration targets.In particular,the method will be useful in areas where no data labels exist regarding the existence or specific spectral signatures of anomalies,such as mineral deposits under greenfield exploration.展开更多
基金supported in part by the National Natural Science Foundation of China(42001408).
文摘Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often lack of capability in separating the foreground and background.This paper proposes an anchor-free method named probability-enhanced anchor-free detector(ProEnDet)for remote sensing object detection.First,a weighted bidirectional feature pyramid is used for feature extraction.Second,we introduce probability enhancement to strengthen the classification of the object’s foreground and background.The detector uses the logarithm likelihood as the final score to improve the classification of the foreground and background of the object.ProEnDet is verified using the DIOR and NWPU-VHR-10 datasets.The experiment achieved mean average precisions of 61.4 and 69.0 on the DIOR dataset and NWPU-VHR-10 dataset,respectively.ProEnDet achieves a speed of 32.4 FPS on the DIOR dataset,which satisfies the real-time requirements for remote-sensing object detection.
文摘A system of on-line contamination detecting in hydraulic oil based on silting principle is accomplished, where, metal filter membrane as detector, solenoid as active force to propel piston to blotter and gain differential pressure, step motor drives the membrane to filtrate and counter-flush, LabVIEW as detecting software platform, oil's contamination detecting indirectly by gauging differential pressure. Based on theory analysis, accomplished is relation between contamination level and differential pressure, realizing polynomial curve fitting, and calibration experiment. Field experiment is simulated in the condition of experimental laboratory, has credible precision and real-time performance, which can popularize to the field of production.
文摘Ⅰ The Indexes of Detecting Oil and Gas Resources The deeply buried reservoir which in a dynamic equilibrium state has a great pressure inside, and between it and earth surface there is a great difference of pressure. Therefore the hydrocarbon must spread and move vertically to the surface along the pressure gradient orientation. Hydrocarbons in the reservoir along some small rifts, cracks, joints and cleavages penetrate the overlying strata and seepage onto the surface. Thus the hydrocarbons become unvisble oil and gas signs. This process is called the phenomena of hydrocarbon microseepage of reservoir. Hydrocarbons microseepage in the process
基金supported by National Petroleum Major Project(Grant No.2011ZX05020-008)
文摘Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.
基金supported by the Chinese Universities Scientific Fund (2022TC169)。
文摘Maize tassel detection is essential for future agronomic management in maize planting and breeding,with application in yield estimation,growth monitoring,intelligent picking,and disease detection.However,detecting maize tassels in the field poses prominent challenges as they are often obscured by widespread occlusions and differ in size and morphological color at different growth stages.This study proposes the SEYOLOX-tiny Model that more accurately and robustly detects maize tassels in the field.Firstly,the data acquisition method ensures the balance between the image quality and image acquisition efficiency and obtains maize tassel images from different periods to enrich the dataset by unmanned aerial vehicle(UAV).Moreover,the robust detection network extends YOLOX by embedding an attention mechanism to realize the extraction of critical features and suppressing the noise caused by adverse factors(e.g.,occlusions and overlaps),which could be more suitable and robust for operation in complex natural environments.Experimental results verify the research hypothesis and show a mean average precision(mAP_(@0.5)) of 95.0%.The mAP_(@0.5),mAP_(@0.5-0.95),mAP_(@0.5-0.95(area=small)),and mAP_(@0.5-0.95(area=medium)) average values increased by 1.5,1.8,5.3,and 1.7%,respectively,compared to the original model.The proposed method can effectively meet the precision and robustness requirements of the vision system in maize tassel detection.
文摘The accuracy of change detection on the earth’s surface is important for understanding the relationships and interactions between human and natural phenomena. Remote Sensing and Geographic Information Systems (GIS) have the potential to provide accurate information regarding land use and land cover changes. In this paper, we investigate the major techniques that are utilized to detect land use and land cover changes. Eleven change detection techniques are reviewed. An analysis of the related literature shows that the most used techniques are post-classification comparison and principle component analysis. Post-classification comparison can minimize the impacts of atmospheric and sensor differences between two dates. Image differencing and image ratioing are easy to implement, but at times they do not provide accurate results. Hybrid change detection is a useful technique that makes full use of the benefits of many techniques, but it is complex and depends on the characteristics of the other techniques such as supervised and unsupervised classifications. Change vector analysis is complicated to implement, but it is useful for providing the direction and magnitude of change. Recently, artificial neural networks, chi-square, decision tree and image fusion have been frequently used in change detection. Research on integrating remote sensing data and GIS into change detection has also increased.
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.
文摘Remote sensing techniques are proven methods for quantifying chlorophyll-a levels by inference algal concentrations in reservoirs. One traditional method is to use Landsat imagery and field data from a limited time period to develop a model for a reservoir which relates reflectance in various bands to measured algal (or chlorophyll-a) concentrations and use that model and associated imagery to determine spatial algal concentrations in the reservoir. In this work, we extend these techniques to use historical Landsat data over long time periods to develop seasonal models that will more accurately describe the conditions throughout the growing season. Previous work at Deer Creek included the development of a chlorophyll-a model using data from the months of August to September. This model did not account for seasonal variation and algal succession, which affects the relationship between measured reflectance and algal concentration. Early summer algal blooms are dominated by diatoms (yellow-brown), while the algae vary from chlorophyta (green) in the mid-summer to cyanobacteria (blue-green) in late summer months. This study presents and explores the development and use of seasonal algorithms based on reflective characteristics of various algal communities to create a more accurate model for the reservoir. This study uses water quality data collected over a 20-year period during non-ice conditions along with associated Landsat data. As the field measurements were not taken to support remote sensing measurements, this study evaluates the use of historical data to support remote sensing analysis. It is assumed that reservoir conditions do not change rapidly, the field data can be used to develop correlations with satellite imagery taken within a day of the field measurements, and the seasonal algal communities have different reflective properties (or colors). We present statistical analysis that shows the seasonal algorithms better fit the data than the non-seasonal model and the traditional model calibrated with late-season data. We recommend the use of sub-seasonal algorithms to more accurately model and predict water quality throughout the growing season.
文摘The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
基金funded by Thuyloi University Foundation for Science and Technologyunder Grant Number TLU.STF.19-02.
文摘In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering.
文摘Algae blooms pose a threat to water quality by depleting oxygen during decomposition and also cause other issues with water quality and water use. Algae biomass is traditional monitored through field samples analyzed for chlorophyll-a, a pigment present in all algae. Field sampling can be time- and cost-intensive, especially in areas that are difficult to access and provides only limited spatial coverage. Estimations of algal biomass based on remote sensing data have been explored over the past two decades as a supplement to information obtained from limited field samples. We use Landsat data to develop and demonstrate seasonal remote sensing models, a relatively recent method, to evaluate spatial and temporal algae distributions for the Jordanelle Reservoir, located in north-central Utah. Remote sensing of chlorophyll as a monitoring and analysis method can provide a more spatially complete representation of algae distribution and biomass;information that is difficult to obtain using point samples.
基金National 1000 Young Talents Plan of ChinaNational Natural Science Foundation of China(61420106007,61671387,61871325)DECRA of Australica Resenrch Council (DE140100180).
文摘alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, which leads to great potential to perform salient object detection for remote sensing images. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise contrast. With the recent use of deep learning framework, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental results using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% improvement compared with the state-of-the-art methods.
基金supported by the National Natural Science Foundation of China(No.61071016)
文摘For the issue of nuclear radiation detection,this paper designs a remote control nuclear radiation detector which can trace a pre-determined route,avoid obstacles effectively,and can be controlled remotely by users wirelessly or through voice command.It can effectively replace manual probing due to convenience,flexibility and safety.The system mainly consists of a nuclear detection module,a voice control module,a route tracing module,an obstacle avoidance module,a data transmission module,storage and a display module,and a D.C.machine.An MSP430 microcontroller is used as a control chip to control the motor and the system uses infrared technology and ultrasonic sensors to achieve intelligent tracing and obstacle avoidance.Moreover,it applies a voice module and data transmission module to remotely controlling the device.The radiation data is shown on an LCD screen.
基金Supported by the National Natural Science Foundation of China (No.40071061).
文摘In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by combining the edge detecting with the multi-resolution analyzing of the wavelet transform. Via the dyadic wavelet decomposing, the RS image of a certain appropriate scale is obtained, and the edge data of the plane and the upright directions are respectively figured out, then the gradient vector module of the surface features is worked out. By tracing them, the authors get the edge data of the object, therefore build the RS image which obtains the checked edge. This method can depress the effect of noise and examine exactly the edge data of the object by rule and line. With an experiment of an RS image which obtains an airport, the authors certificate the feasibility of the application of dyadic wavelet in the object edge detection.
文摘A new edge detector based on the nonlinear intensity of curved surface was proposed. The edge detector describes the largest curvature and the smallest curvature of curved surface, therefore it can reflect the real largest direction of image edge jump. By the new edge detector, it is convenient to calculate the curvature in any direction of the curved surface and the curvature can be used in the identification of edge direction and the feature extraction of objects on remote sensing image.
文摘On-line chatter detection can avoid unstable cutting through monitoring the machining process.In order to identify chatter in a timely manner,an improved Support Vector Machine(SVM)is developed in this paper,based on extracted features.In the SVM model,the penalty factor(e)and the core parameter(g)have important influence on the classification,more than from Kernel Functions(KFs).Hence,first the classification results are conducted using different KFs.Then two methods are presented for exploring the best parameters.The chatter identification results show that the Genetic Algorithm(GA)approach is more suitable for deciding the parameters than the Grid Explore(GE)approach.
文摘The valuation relation of potential difference with discharging time in Electrical Discharge Machining (EDM) is analyzed theoretically and tested and verified by experiments designed in this paper and the relation between potential difference and spark location is induced and analyzed, and proceed by experiments under the condition of onedimension.
基金Supported by a Department of Science and Innovation(DSI)-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘Most known mineral deposits were discovered by accident using expensive,time-consuming,and knowledgebased methods such as stream sediment geochemical data,diamond drilling,reconnaissance geochemical and geophysical surveys,and/or remote sensing.Recent years have seen a decrease in the number of newly discovered mineral deposits and a rise in demand for critical raw materials,prompting exploration geologists to seek more efficient and inventive ways for processing various data types at different phases of mineral exploration.Remote sensing is one of the most sought-after tools for early-phase mineral prospecting because of its broad coverage and low cost.Remote sensing images from satellites are publicly available and can be utilised for lithological mapping and mineral exploitation.In this study,we extend an artificial intelligence-based,unsupervised anomaly detection method to identify iron deposit occurrence using Landsat-8 Operational Land Imager(OLI)satellite imagery and machine learning.The novelty in our method includes:(1)knowledge-guided and unsupervised anomaly detection that does not assume any specific anomaly signatures;(2)detection of anomalies occurs only in the variable domain;and(3)a choice of a range of machine learning algorithms to balance between explain-ability and performance.Our new unsupervised method detects anomalies through three successive stages,namely(a)stage Ⅰ–acquisition of satellite imagery,data processing and selection of bands,(b)stage Ⅱ–predictive modelling and anomaly detection,and(c)stage Ⅲ–construction of anomaly maps and analysis.In this study,the new method was tested over the Assen iron deposit in the Transvaal Supergroup(South Africa).It detected both the known areas of the Assen iron deposit and additional deposit occurrence features around the Assen iron mine that were not known.To summarise the anomalies in the area,principal component analysis was used on the reconstruction errors across all modelled bands.Our method enhanced the Assen deposit as an anomaly and attenuated the background,including anthropogenic structural anomalies,which resulted in substantially improved visual contrast and delineation of the iron deposit relative to the background.The results demonstrate the robustness of the proposed unsupervised anomaly detection method,and it could be useful for the delineation of mineral exploration targets.In particular,the method will be useful in areas where no data labels exist regarding the existence or specific spectral signatures of anomalies,such as mineral deposits under greenfield exploration.