Remote sensing(RS)presents laser scanning measurements,aerial photos,and high-resolution satellite images,which are utilized for extracting a range of traffic-related and road-related features.RS has a weakness,such a...Remote sensing(RS)presents laser scanning measurements,aerial photos,and high-resolution satellite images,which are utilized for extracting a range of traffic-related and road-related features.RS has a weakness,such as traffic fluctuations on small time scales that could distort the accuracy of predicted road and traffic features.This article introduces an Optimal Deep Learning for Traffic Critical Prediction Model on High-Resolution Remote Sensing Images(ODLTCP-HRRSI)to resolve these issues.The presented ODLTCP-HRRSI technique majorly aims to forecast the critical traffic in smart cities.To attain this,the presented ODLTCP-HRRSI model performs two major processes.At the initial stage,the ODLTCP-HRRSI technique employs a convolutional neural network with an auto-encoder(CNN-AE)model for productive and accurate traffic flow.Next,the hyperparameter adjustment of the CNN-AE model is performed via the Bayesian adaptive direct search optimization(BADSO)algorithm.The experimental outcomes demonstrate the enhanced performance of the ODLTCP-HRRSI technique over recent approaches with maximum accuracy of 98.23%.展开更多
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human...Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.展开更多
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot...The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.展开更多
This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest reso...This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest resources field survey da-ta, ETM+ remote sensing data and basic geographical information data as research material through the extraction of forest resource data in the forest farm, require-ment analysis on the system function and the estabIishment of required software and hardware environment, with the alm to realize the management, query, editing, analysis, statistics and other functions of forest resources information to manage the forest resources.展开更多
Landslides,collapses and cracks are the main types of geological hazards,which threaten the safety of human life and property at all times.In emergency surveying and mapping,it is timeconsuming and laborious to use th...Landslides,collapses and cracks are the main types of geological hazards,which threaten the safety of human life and property at all times.In emergency surveying and mapping,it is timeconsuming and laborious to use the method of field artificial investigation and recognition and using satellite image to identify ground hazards,there are some problems,such as time lag,low resolution,and difficult to select the map on demand.In this paper,a10 cm per pixel resolution photogrammetry of a geological hazard-prone area of Taohuagou,Shanxi Province,China is carried out by DJ 4 UAV.The digital orthophoto model(DOM),digital surface model(DSM) and three-dimensional point cloud model(3 DPCM) are generated in this region.The method of visual interpretation of cracks based on DOM(as main)-3 DPCM(as auxiliary) and landslide and collapse based on 3 DPCM(as main)-DOM and DSM(as auxiliary) are proposed.Based on the low altitude remote sensing image of UAV,the shape characteristics,geological characteristics and distribution of the identified hazards are analyzed.The results show that using UAV low altitude remote sensing image,the method of combination of main and auxiliary data can quickly and accurately identify landslide,collapse and crack,the accuracy of crack identification is 93%,and the accuracy of landslide and collapse identification is 100%.It mainly occurs in silty clay and mudstone geology and is greatly affected by slope foot excavation.This study can play a great role in the recognition of sudden hazards by low altitude remote sensing images of UAV.展开更多
This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water dep...This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water depth, wavelength and wave radian frequency in shallow water was deduced based on shallow-water wave theory. Considering the complex wave distribution in the optical remote sensing imagery, Fast Fourier Transform (FFT) and spatial profile measurements were applied for measuring the wavelengths. Then, the wave radian frequency was calculated by analyzing the long-distance fluctuation in the wavelength, which solved a key problem in obtaining the wave radian frequency in a single-frame image. A case study was conducted for Sanya Bay of Hainan Island, China. Single-flame fine-resolution optical remote sensing imagery from QuickBird satellite was used to invert the bathymetry without external input parameters. The result of the digital elevation model (DEM) was evaluated against a sea chart with a scale of 1:25 000. The root-mean-square error of the inverted bathymetry was 1.07 m, and the relative error was 16.2%. Therefore, the proposed method has the advantages including no requirement for true depths and environmental parameters, and is feasible for mapping the bathymetry of shallow coastal water.展开更多
Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional meth...Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.展开更多
The recent advances in remote sensing and computer techniques give birth to the explosive growth of remote sensing images.The emergence of cloud storage has brought new opportunities for storage and management of mass...The recent advances in remote sensing and computer techniques give birth to the explosive growth of remote sensing images.The emergence of cloud storage has brought new opportunities for storage and management of massive remote sensing images with its large storage space,cost savings.However,the openness of cloud brings challenges for image data security.In this paper,we propose a weighted image sharing scheme to ensure the security of remote sensing in cloud environment,which takes the weights of participants(i.e.,cloud service providers)into consideration.An extended Mignotte sequence is constructed according to the weights of participants,and we can generate image shadow shares based on the hash value which can be obtained from gray value of remote sensing images.Then we store the shadows in every cloud service provider,respectively.At last,we restore the remote sensing image based on the Chinese Remainder Theorem.Experimental results show the proposed scheme can effectively realize the secure storage of remote sensing images in the cloud.The experiment also shows that no matter weight values,each service providers only needs to save one share,which simplifies the management and usage,it also reduces the transmission of secret information,strengthens the security and practicality of this scheme.展开更多
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom...A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.展开更多
Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-...Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.展开更多
There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge ...There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the sur...This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the survey and analysis of RBPNN for the classification of remote sensing multi_spectral image is discussed.The successful application of RBPNN to a land cover classification illustrates the simple computation and high accuracy of the new neural network and the flexibility and practicality of this new approach.展开更多
In order to apply the spatial structure information to remote sensing interpretation through fractal theory, an algorithm is introduced to compute the single pixd fraetal dimension in remote sensing images. After a co...In order to apply the spatial structure information to remote sensing interpretation through fractal theory, an algorithm is introduced to compute the single pixd fraetal dimension in remote sensing images. After a computer program was written according to the algorithm, the ETM+ images were calculated to obtain their fractal data through the program. The algorithm has following characteristics: The obtained fractal values indicate the complexity of image, and have positive correlation with the complexity of images and ground objects. Moreover, the algorithm is simple and reliable, and easy to be implemented.展开更多
The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectiv...The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.展开更多
A simple and adaptive lossless compression algorithm is proposed for remote sensing image compression, which includes integer wavelet transform and the Rice entropy coder. By analyzing the probability distribution of ...A simple and adaptive lossless compression algorithm is proposed for remote sensing image compression, which includes integer wavelet transform and the Rice entropy coder. By analyzing the probability distribution of integer wavelet transform coefficients and the characteristics of Rice entropy coder, the divide and rule method is used for high-frequency sub-bands and low-frequency one. High-frequency sub-bands are coded by the Rice entropy coder, and low-frequency coefficients are predicted before coding. The role of predictor is to map the low-frequency coefficients into symbols suitable for the entropy coding. Experimental results show that the average Comprcssion Ratio (CR) of our approach is about two, which is close to that of JPEG 2000. The algorithm is simple and easy to be implemented in hardware. Moreover, it has the merits of adaptability, and independent data packet. So the algorithm can adapt to space lossless compression applications.展开更多
Based on the satellite remote sensing TM/ETM images of Xuzhou city, basic data about land use of the city from 1994 to 2000 are obtained with the neural network classification module of PCI software, and the dynamic c...Based on the satellite remote sensing TM/ETM images of Xuzhou city, basic data about land use of the city from 1994 to 2000 are obtained with the neural network classification module of PCI software, and the dynamic con- version matrix of land use is thus calculated. The areas of construction land and water body have increased by 1833.93 hm2 and 804.87 hm2, respectively. On the contrary, the area of cropland has decreased by 3207.24 hm2. The area of cropland converted into construction land makes up 26.84%, and that converted into water body amounts for 8.17% of the total area of cropland in 1994. The variation index of land use degree and the dynamic degree index of land use computed are 1.38 and 57.81%, respectively, which demonstrate that land use in Xuzhou is in a development period and the changes are drastic. The frequency index and importance index of the form in which cropland converted into con- struction land are 29.91% and 68.93% respectively. The results indicate that the change is not only widespread in space but a major form of spatial change of land use in the area.展开更多
We discuss remote-sensing-image fusion based on a multi-band wavelet and RGB feature fusion method. The fused data can be used to monitor the dynamic evolution of mining induced subsidence. High resolution panchromati...We discuss remote-sensing-image fusion based on a multi-band wavelet and RGB feature fusion method. The fused data can be used to monitor the dynamic evolution of mining induced subsidence. High resolution panchromatic image data and multi-spectral image data were first decomposed with a multi-ary wavelet method. Then the high frequency components of the high resolution image were fused with the features from the R, G, B bands of the multi-spectral image to form a new high frequency component. Then the newly formed high frequency component and the low frequency component were inversely transformed using a multi-ary wavelet method. Finally, color images were formed from the newly formed R, G, B bands. In our experiment we used images with a resolution of 10 m (SPOT), and TM30 images, of the Huainan mining area. These images were fused with a trinary wavelet method. In addition, we used four indexes—entropy, average gradient, wavelet energy and spectral distortion—to assess the new method. The result indicates that this new method can improve the clarity and resolution of the images and also preserves the information from the original images. Using the fused images for monitoring mining induced subsidence achieves a good effect.展开更多
文摘Remote sensing(RS)presents laser scanning measurements,aerial photos,and high-resolution satellite images,which are utilized for extracting a range of traffic-related and road-related features.RS has a weakness,such as traffic fluctuations on small time scales that could distort the accuracy of predicted road and traffic features.This article introduces an Optimal Deep Learning for Traffic Critical Prediction Model on High-Resolution Remote Sensing Images(ODLTCP-HRRSI)to resolve these issues.The presented ODLTCP-HRRSI technique majorly aims to forecast the critical traffic in smart cities.To attain this,the presented ODLTCP-HRRSI model performs two major processes.At the initial stage,the ODLTCP-HRRSI technique employs a convolutional neural network with an auto-encoder(CNN-AE)model for productive and accurate traffic flow.Next,the hyperparameter adjustment of the CNN-AE model is performed via the Bayesian adaptive direct search optimization(BADSO)algorithm.The experimental outcomes demonstrate the enhanced performance of the ODLTCP-HRRSI technique over recent approaches with maximum accuracy of 98.23%.
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
基金the National Natural Science Foundation of China(42001408,61806097).
文摘Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.
基金This project is supported by the National Natural Science Foundation of China(NSFC)(No.61902158).
文摘The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
文摘This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest resources field survey da-ta, ETM+ remote sensing data and basic geographical information data as research material through the extraction of forest resource data in the forest farm, require-ment analysis on the system function and the estabIishment of required software and hardware environment, with the alm to realize the management, query, editing, analysis, statistics and other functions of forest resources information to manage the forest resources.
基金supported by the National Natural Science Foundation of China (Award Number: 51704205)Key R & D Plan projects in Shanxi Province of China (Award Number: 201803D31044)+1 种基金Education Department Natural Science Foundation in Guizhou of China (Award Number: KY (2017) 097)the High-Level Talents Fund of Guizhou University of Engineering Science (Award Number: G2015005)。
文摘Landslides,collapses and cracks are the main types of geological hazards,which threaten the safety of human life and property at all times.In emergency surveying and mapping,it is timeconsuming and laborious to use the method of field artificial investigation and recognition and using satellite image to identify ground hazards,there are some problems,such as time lag,low resolution,and difficult to select the map on demand.In this paper,a10 cm per pixel resolution photogrammetry of a geological hazard-prone area of Taohuagou,Shanxi Province,China is carried out by DJ 4 UAV.The digital orthophoto model(DOM),digital surface model(DSM) and three-dimensional point cloud model(3 DPCM) are generated in this region.The method of visual interpretation of cracks based on DOM(as main)-3 DPCM(as auxiliary) and landslide and collapse based on 3 DPCM(as main)-DOM and DSM(as auxiliary) are proposed.Based on the low altitude remote sensing image of UAV,the shape characteristics,geological characteristics and distribution of the identified hazards are analyzed.The results show that using UAV low altitude remote sensing image,the method of combination of main and auxiliary data can quickly and accurately identify landslide,collapse and crack,the accuracy of crack identification is 93%,and the accuracy of landslide and collapse identification is 100%.It mainly occurs in silty clay and mudstone geology and is greatly affected by slope foot excavation.This study can play a great role in the recognition of sudden hazards by low altitude remote sensing images of UAV.
基金The Public Science and Technology Research Fund Project of Ocean under contract No.201105001the National Nature Science Foundation of China under contract No.41576174the Public Science and Technology Research Fund Project of Surveying,Mapping and Geoinformation under contract No.201512030
文摘This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water depth, wavelength and wave radian frequency in shallow water was deduced based on shallow-water wave theory. Considering the complex wave distribution in the optical remote sensing imagery, Fast Fourier Transform (FFT) and spatial profile measurements were applied for measuring the wavelengths. Then, the wave radian frequency was calculated by analyzing the long-distance fluctuation in the wavelength, which solved a key problem in obtaining the wave radian frequency in a single-frame image. A case study was conducted for Sanya Bay of Hainan Island, China. Single-flame fine-resolution optical remote sensing imagery from QuickBird satellite was used to invert the bathymetry without external input parameters. The result of the digital elevation model (DEM) was evaluated against a sea chart with a scale of 1:25 000. The root-mean-square error of the inverted bathymetry was 1.07 m, and the relative error was 16.2%. Therefore, the proposed method has the advantages including no requirement for true depths and environmental parameters, and is feasible for mapping the bathymetry of shallow coastal water.
基金Under the auspices of National Natural Science Foundation of China (No. 40871241, 40771170)National High Technology Research and Development Program of China (No. 2007AA12Z176)
文摘Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.
基金This research was partly supported by(National Natural Science Foundation of China under 41671431,61572421and Shanghai Science and Technology Commission Project 15590501900.
文摘The recent advances in remote sensing and computer techniques give birth to the explosive growth of remote sensing images.The emergence of cloud storage has brought new opportunities for storage and management of massive remote sensing images with its large storage space,cost savings.However,the openness of cloud brings challenges for image data security.In this paper,we propose a weighted image sharing scheme to ensure the security of remote sensing in cloud environment,which takes the weights of participants(i.e.,cloud service providers)into consideration.An extended Mignotte sequence is constructed according to the weights of participants,and we can generate image shadow shares based on the hash value which can be obtained from gray value of remote sensing images.Then we store the shadows in every cloud service provider,respectively.At last,we restore the remote sensing image based on the Chinese Remainder Theorem.Experimental results show the proposed scheme can effectively realize the secure storage of remote sensing images in the cloud.The experiment also shows that no matter weight values,each service providers only needs to save one share,which simplifies the management and usage,it also reduces the transmission of secret information,strengthens the security and practicality of this scheme.
文摘A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.
基金supported by the National Natural Science Foundation of China(61172127)the Natural Science Foundation of Anhui Province(1408085MF121)
文摘Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.
文摘This paper presents a new kind of back propagation neural network (BPNN) based on rough sets,called rough back propagation neural network (RBPNN).The architecture and training method of RBPNN are presented and the survey and analysis of RBPNN for the classification of remote sensing multi_spectral image is discussed.The successful application of RBPNN to a land cover classification illustrates the simple computation and high accuracy of the new neural network and the flexibility and practicality of this new approach.
文摘In order to apply the spatial structure information to remote sensing interpretation through fractal theory, an algorithm is introduced to compute the single pixd fraetal dimension in remote sensing images. After a computer program was written according to the algorithm, the ETM+ images were calculated to obtain their fractal data through the program. The algorithm has following characteristics: The obtained fractal values indicate the complexity of image, and have positive correlation with the complexity of images and ground objects. Moreover, the algorithm is simple and reliable, and easy to be implemented.
基金Young Innovative Talents Project of Guangdong Ordinary Universities(No.2022KQNCX225)School-level Teaching and Research Project of Guangzhou City Polytechnic(No.2022xky046)。
文摘The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.
文摘A simple and adaptive lossless compression algorithm is proposed for remote sensing image compression, which includes integer wavelet transform and the Rice entropy coder. By analyzing the probability distribution of integer wavelet transform coefficients and the characteristics of Rice entropy coder, the divide and rule method is used for high-frequency sub-bands and low-frequency one. High-frequency sub-bands are coded by the Rice entropy coder, and low-frequency coefficients are predicted before coding. The role of predictor is to map the low-frequency coefficients into symbols suitable for the entropy coding. Experimental results show that the average Comprcssion Ratio (CR) of our approach is about two, which is close to that of JPEG 2000. The algorithm is simple and easy to be implemented in hardware. Moreover, it has the merits of adaptability, and independent data packet. So the algorithm can adapt to space lossless compression applications.
基金Projects 40401038 supported by National Natural Science Foundation of China, and 05KJB420133 by Natural Science Foundation for Colleges and Universities in Jiangsu Province
文摘Based on the satellite remote sensing TM/ETM images of Xuzhou city, basic data about land use of the city from 1994 to 2000 are obtained with the neural network classification module of PCI software, and the dynamic con- version matrix of land use is thus calculated. The areas of construction land and water body have increased by 1833.93 hm2 and 804.87 hm2, respectively. On the contrary, the area of cropland has decreased by 3207.24 hm2. The area of cropland converted into construction land makes up 26.84%, and that converted into water body amounts for 8.17% of the total area of cropland in 1994. The variation index of land use degree and the dynamic degree index of land use computed are 1.38 and 57.81%, respectively, which demonstrate that land use in Xuzhou is in a development period and the changes are drastic. The frequency index and importance index of the form in which cropland converted into con- struction land are 29.91% and 68.93% respectively. The results indicate that the change is not only widespread in space but a major form of spatial change of land use in the area.
基金Project 2003-38 supported by the Geological Investigation Item of Anhui Province
文摘We discuss remote-sensing-image fusion based on a multi-band wavelet and RGB feature fusion method. The fused data can be used to monitor the dynamic evolution of mining induced subsidence. High resolution panchromatic image data and multi-spectral image data were first decomposed with a multi-ary wavelet method. Then the high frequency components of the high resolution image were fused with the features from the R, G, B bands of the multi-spectral image to form a new high frequency component. Then the newly formed high frequency component and the low frequency component were inversely transformed using a multi-ary wavelet method. Finally, color images were formed from the newly formed R, G, B bands. In our experiment we used images with a resolution of 10 m (SPOT), and TM30 images, of the Huainan mining area. These images were fused with a trinary wavelet method. In addition, we used four indexes—entropy, average gradient, wavelet energy and spectral distortion—to assess the new method. The result indicates that this new method can improve the clarity and resolution of the images and also preserves the information from the original images. Using the fused images for monitoring mining induced subsidence achieves a good effect.