High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis pro...High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application.展开更多
Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the p...Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the process of ammonia nitrogen removal ,related data between ammonia removal and five factors was received through multi-factor orthogonal test,and established relations model between the five factor and nitrogen removal. The results show that five-factors had significant effect on AR,and the best combinations for removing AR was temperature 30 ℃,pH=7.0,light intensity 6 000 lux,dissolved oxygen 5.0 mg/L and the fill rate 10%. According to the experimental data,equation model was proposed and coefficient of determination R2 =0.864 8,P<0.05. Samples T-test was done between the model predictions and the actual measured values.Test results showed that the significant difference of overall mean value sig. (2-tailed) was 0.978 (P>0.05),it Shows that had no significant difference between model predictions and the actual measured value,and model had a high degree of fitting.展开更多
Removal of ammonia nitrogen and nitrate nitrogen by an heterotrophic nitrification-aerobic denitrification strain is an economical and effective method. In this article, a kind of heterotrophic nitrification-aerobic d...Removal of ammonia nitrogen and nitrate nitrogen by an heterotrophic nitrification-aerobic denitrification strain is an economical and effective method. In this article, a kind of heterotrophic nitrification-aerobic denitrification strain which has aerobic denitrification and heterotrophic nitrification ability was selected, and then was identified as rhodococcus sp. by 16S rRNA sequencing analysis and morphological observation. After that, carbon source utilization and nitrification- denitrification activity of this strain in different C/N, initial nitrogen concentration were studied. In addition, the assimilation and denitrification activities of ammonia and nitrate were also researched under the condition of nitrate and ammonia coexisted in the solution. The results show that the strain can grow in sodium acetate, glucose, sodium succinate and sodium citrate solutions, and it can not survive in sodium oxalate, sucrose and soluble starch solutions. Initial concentration and C/N were important for nitrogen removal rate. This strain can completely remove nitrate/ammonia when nitrate/ammonia concentration was lower than 15 mg l-1/80 mg l-1. the C/N of 10 and of 12 were the optimum C/N ratio in the nitrate and ammonia removal process respectively. pH value rose up sharply in the denitrification process and it increased relatively slowly in the nitrification process, which shows that pH is one of the most important factor inhibiting the denitrification removal process. Nitrite concentration was much higher in denitrification process than in nitrification process. In addition, this strain gave priority to utilizing ammonia as nitrogen source when ammonia and nitrate coexisted in the solution.展开更多
Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,whic...Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,which is vital to elucidate the underlying mechanism of ammonia nitrogen.In this study,clams R.philippinarum were exposed to ammonia nitrogen for 21 d at two environmentally relevant concentrations.The tandem mass tags approach(TMT)was applied to assay the differentially expressed proteins(DEPs)in clam gill tissues on the 3 rd and 21 st day.Finally,a total of 7263 proteins were identified.Bioinformatics analyses revealed that clam protein profiles changed in dose-and time dependent manner after ammonia nitrogen exposure.We inferred that the clams may face heavy challenges after ammonia exposure,such as unbalanced gender ratio,lysosomal disease,energy lack,neurological disorders,altered glutamine metabolism,increased lipid synthesis,and impaired immunity.Variation profiles of enzyme activities of glutaminase and glutamine synthase provided direct evidence to verify the related inference from proteome data.Most of the inferred toxic effects merit further study.This study identified important proteins related to ammonia nitrogen toxicity in the clam and indicated the severe stress of marine ammonia pollution on the healthy development of mollusc aquaculture.展开更多
Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the...Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.展开更多
AgBr/C_(3)N_(5)composite was prepared by in-situ precipitation of AgBr on the surface of nitrogen-rich carbon nitride(C_(3)N_(5)).The crystal phase,chemical composition,elemental composition,spectral absorption and ph...AgBr/C_(3)N_(5)composite was prepared by in-situ precipitation of AgBr on the surface of nitrogen-rich carbon nitride(C_(3)N_(5)).The crystal phase,chemical composition,elemental composition,spectral absorption and photoelectron-hole separation of the composite were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-vis DRS)and photoluminescence spectroscopy(PL).The construction of AgBr and C_(3)N_(5)heterojunction could broaden the spectral response range,realize the efficient separation of photoelectrons and holes,and thus improve the photocatalytic performance.The photocatalytic performance of the composite material was studied by simulating inorganic ammonia nitrogen wastewater with NH_(4)Cl solution.The dosage of the composite material was 0.10 g,the initial mass concentration of NH_(4)Cl solution was 100 mg/L,and the initial pH was 10.0.The removal rate of ammonia nitrogen by the composite material reached 90.27%after 60 min of simulated visible light irradiation.After 5 cycles,the removal rate of ammonia nitrogen only declined by 0.12%.The composite material showed good photocatalytic performance and stability.The Z-scheme mechanism effectively retained the reduction and oxidation activities of photoelectrons and holes,which could change O_(2)and H2O to active groups such as superoxide radicals(·O_(2)-)and hydroxyl radicals(·OH),respectively,achieving efficient removal of inorganic ammonia nitrogen.展开更多
This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance ...This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance of NH4^+-N by composite adsorption particle was monitored under different raw material proportions and initial NH4^+-N concentration. Besides, adsorption kinetics and adsorption isotherms were investigated to reveal the adsorption mechanisms. The results showed that NH4^+-N was effectively removed under optimal proportion of biochar, foaming agent and crosslinker with 20%, 3%, and 3%, respectively. The optimal contact time was 150 min and the best removal efficiency was 88.6% at initial NH4^+-N concentration of 20 mg L^-1. The adsorption performance was well described by the second order kinetic model and Freundlich model. The novel clay/biochar composite adsorption particle in this study demonstrated a high potential for NH4^+-N removal from surface water.展开更多
An experimental system of De-NO with plasma-catalyst(Cu zeolite) was established to investigate the differences between De- NO with plasma-catalyst and De-NO only with plasma, to provide the instruction for selectin...An experimental system of De-NO with plasma-catalyst(Cu zeolite) was established to investigate the differences between De- NO with plasma-catalyst and De-NO only with plasma, to provide the instruction for selecting appropriate catalyst and operating condition, The characteristics of De-NO with plasma and De-NO with plasma-catalyst were investigated comparatively by experiments. The experimental results show that De-NO with plasma-catalyst has high NO removal rate; Cu zeolite is an effective catalyst which can promote NO removal rate in plasma remarkably; De-NO with plasma-catalyst should be operated at low temperature and the temperature has opposite effects on the function of catalvst and plasma; water vapor and O2 can increase the NO removal rate.展开更多
A simple and efficient sonochemical method was developed for the degradation of organic matter and ammonia nitrogen in azodicarbonamide wastewater.The effects of initial pH,ultrasound format and peripheral water level...A simple and efficient sonochemical method was developed for the degradation of organic matter and ammonia nitrogen in azodicarbonamide wastewater.The effects of initial pH,ultrasound format and peripheral water level on the sonolysis of hydrazine,urea,COD and ammonia nitrogen were investigated.It is found that the initial pH has a significant influence on the degradation of hydrazine and ammonia nitrogen,whereas this impact to urea is relatively small.It also shows that a noticeable enhancement of ammonia nitrogen removal could be achieved in a proper intermittent ultrasound operation mode,i.e.,1/1 min on/off mode.The height difference between the periph-eral water level and the inner water level of the flask affects the efficiency of ultrasonic treatment as well.展开更多
In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the...In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the to- tal nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods,this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia,nitrate,and total nitrogen in the effluent.To verify the simulation results,pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results,which proved the validity of the developed model. The sensitivity of the model predictions was analyzed.After verification of the validity,the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period,the effluent total nitrogen concentrations were all below 5mg·L -1 ,with more than 90%removal efficiency.展开更多
The landfill of municipal solid waste(MSW) could be regarded as denitrification reactor and involved in ammonia nitrogen biological removal process. In this research, the process was applied to municipal solid waste c...The landfill of municipal solid waste(MSW) could be regarded as denitrification reactor and involved in ammonia nitrogen biological removal process. In this research, the process was applied to municipal solid waste collected in Shanghai, China, which was characterized by high food waste content. The NH + 4 removal efficiency in the system of SBR nitrifying reactor followed by fresh and matured landfilled waste layer in series was studied. In the nitrifying reactor, above 90% of NH + 4 in leachate was oxidized to NO - 2 and NO - 3. Then high concentrated NO - 2 and NO - 3 were removed in the way of denitrification process in fresh landfilled waste layer. At the same time, degradation of fresh landfilled waste was accelerated. Up to the day 120, 136.5 gC/(kg dry waste) and 17.9 gN/(kg dry waste) were converted from waste layer. It accounted for 50.15% and 86.89% of the total carbon and nitrogen content of preliminary fresh waste, which was 4.42 times and 5.17 times higher than that of reference column respectively. After filtering through matured landfilled waste, BOD 5 concentration in leachate dropped to below 100 mg/L, which would not affect following nitrification adversely. Because the matured landfilled waste acted as a well methanogenic reactor, 23% of carbon produced accumulatively from fresh landfilled waste degradation was converted into CH 4.展开更多
This paper presents lab-scale experiment carried out to evaluate the correlation between ammonia nitrogen (NH3-N) and p-toluidine using sequencing batch reactor treating synthetic p-toluidine wastewater. The profile...This paper presents lab-scale experiment carried out to evaluate the correlation between ammonia nitrogen (NH3-N) and p-toluidine using sequencing batch reactor treating synthetic p-toluidine wastewater. The profiles of NH3-N and p-toluidine were traced under the concentration of sucrose in the influent varied from 0 to 500 mg/L, aerated airflow varied from 0.6 to 1.2 L/min and temperature varied from 10 to 25℃, respectively. The results showed that the concentration of NH3-N turned from increase to decrease when p-toluidine was nearly completely biodegraded, so the profile of NH3-N could clearly indicate the endpoint of p-toluidine biodegradation. And the profile of NH3-N was not influenced by the sucrose in the influent, aerated airflow and temperature. It is showed that using ammonia nitrogen as monitoring and control parameter is feasible and reliable and has promising application in amine wastewater treatment by SBR.展开更多
The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of...The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of ammonia nitrogen by sodium hypochlorite accorded with a pseudo first-order kinetics model,and the influencing factors included Na Cl O dosage,initial concentration of ammonia nitrogen,salinity,temperature,and so on. When Na Cl O dosage was 0. 6%( MCl∶ MN= 13. 76),the reaction rate constant was up to 0. 015 75 min^(-1). The higher the initial concentration of ammonia nitrogen was,the worse the effect of oxidation reaction was. When the initial concentration did not exceed 45 mg/L,the effect on oxidation reaction rate constant increased with the increase of the initial concentration. Low salinity had no effect on ammonia nitrogen oxidation.When salinity was higher than 2. 0%,the inhibition effect on ammonia nitrogen oxidation would increase,and the reaction rate constant decreased obviously with the increase of salinity. The improvement of reaction temperature was beneficial to ammonia oxidation degradation. As temperature increased from 10 to 35 ℃,the reaction rate constant rose from 0. 00188 to 0. 01043 min^(-1).展开更多
[ Objective] The study aimed to discuss the feasibility and optimal conditions of removing ammonia nitrogen by using microwave coupled with active carbon. [ Method ] In the study, a novel process, microwave radiation ...[ Objective] The study aimed to discuss the feasibility and optimal conditions of removing ammonia nitrogen by using microwave coupled with active carbon. [ Method ] In the study, a novel process, microwave radiation coupled with active carbon, was applied to remove ammonia nitro- gen from wastewater, and the influences of solution pH, air conditions, active carbon usage, microwave power and time on the removal effect of ammonia nitrogen were studied. [ Result] Microwave coupled with active carbon can remove ammonia nitrogen efficiently, and pumping air into the wastewater can also increase the removal rate of ammonia nitrogen to a certain extent. Higher pH, intensive microwave power and longer treating time could also increase the removal rate of ammonia nitrogen using microwave radiation coupled with active carbon, whereas the usage of active carbon contributed a small impact. It was proved that microwave coupled with active carbon was an effective method for the removal of ammonia ni- trogen from wastewater. Meanwhile, the orthogonal experiment results showed that the removal rate of ammonia nitrogen reached 92.5% under the optimal conditions, that is, the usage of active carbon was 0.5 g, pH = 11, microwave radiation power was 850 W, and microwave action time was 4 minutes. [ Conclusion] The research provided a new method to remove ammonia nitrogen from wastewater, namely microwave coupled with ac- tive carbon.展开更多
This study aimed to investigate the mechanism of nitrogen doping,migration,and conversion during ammonia torrefaction and also explore the evolution law of the chemical structure of cellulose.The results showed that t...This study aimed to investigate the mechanism of nitrogen doping,migration,and conversion during ammonia torrefaction and also explore the evolution law of the chemical structure of cellulose.The results showed that the ammonia torrefaction pretreatment could significantly optimize the distribution of nitrogen and oxygen elements in cellulose.The carbon skeleton first captured the active nitrogenous radicals to form-NHn-N,and pyridine-N and pyrrole-N originated from the conversion of-NHn-N.The existence of C=O played a major role in the immobilization of nitrogen.The nitrogen in bio-oil exists mainly in the form of five-and six-membered heterocycles.The correlation analysis showed that the main precursors for the formation of nitrogenous heterocyclic compounds were five-membered Oheterocyclic compounds.Finally,the product distribution characteristics in the torrefaction-pyrolysis systems were summarized,and the nitrogen doping and conversion mechanisms were proposed.This study expanded the boundaries of cellulose pretreatment and the production of high-value chemicals.展开更多
Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of ...Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.展开更多
The kinetics of denitrogenation from liquid steel was studied by using an oxygen-nitrogen analysis system(LECO TC-436) under 1600 degreesC similar to 2813 degreesC conditions. The results show that when [S]=0.005%, ni...The kinetics of denitrogenation from liquid steel was studied by using an oxygen-nitrogen analysis system(LECO TC-436) under 1600 degreesC similar to 2813 degreesC conditions. The results show that when [S]=0.005%, nitrogen removal was controlled by nitrogen transfer in liquid diffusion layer, when [S]=0.012% and 0.140%, it was controlled by both nitrogen transfer in liquid diffusion layer and the chemical reaction at the liquid-gas interface below 2250 degreesC, and by nitrogen transfer in liquid diffusion layer under 2250 degreesC similar to 2813 degreesC conditions. The activation energy E-a was 57 kJ/mol for 0.0050%[S], 95 kJ/mol for 0.012%[S], 165 kJ/mol for 0.140%[S]. The resistance of sulphur on nitrogen removal decreased with the temperature rose, and disappeared at 2630 degreesC. Based on the results obtained, it has been answered why the nitrogen in liquid steel can be decreased rapidly by carbon-oxygen reaction under very high oxygen and sulphur content conditions during the BOF, EAF, VOD and AOD steelmaking processes.展开更多
Red brick,cement brick and ceramsite were taken as the substrate of constructed wetland,and removal effect of ammonia nitrogen by the mixed substrate under different combination manners and aeration condition was expl...Red brick,cement brick and ceramsite were taken as the substrate of constructed wetland,and removal effect of ammonia nitrogen by the mixed substrate under different combination manners and aeration condition was explored. Research results showed that cement brick had the best removal effect on ammonia nitrogen,followed by red brick and ceramsite; aeration was favorable for the removal of ammonia nitrogen by each substrate and the mixed substrate; removal rate sequence of ammonia nitrogen by each mixed substrate was red brick + cement brick > red brick + cement brick + ceramsite > cement brick + ceramsite > red brick + ceramsite; the combination of red brick + cement brick had the best removal effect on ammonia nitrogen in domestic sewage. Comprehensively considering,the mixed substrate of red brick + cement brick has better stability and higher ammonia nitrogen removal rate,and it is suitable as the mixed adsorption substrate of constructed wetland.展开更多
Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feedi...Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feeding process achieves over 80% total nitrogen (TN) removal efficiency, but the TN removal efficiency of the A/O process is only 40%. Moreover, filamentous sludge bulking can be well restrained in the step-feeding process. Given the conditions of a returned sludge ratio of 100% and a nitrifying liquor recycle ratio of 200%, the TN removal efficiency is 78.32% in the A/O process, but the sludge volume index (SVI) value increases to 143 mL/g. In the step-feeding process, the SVI is only 94.4 mL/g when the TN removal efficiency reaches 81. 1%. The step-feeding process has distinct advantages over the A/O process in the aspects of practicability, nitrogen removal and operating stability.展开更多
Wastewater containing high concentrations of ammonia can be harmful to aquatic life and degrade the water quality. Wastewater containing ammonia is usually removed by conventional methods such as aeration in towers, b...Wastewater containing high concentrations of ammonia can be harmful to aquatic life and degrade the water quality. Wastewater containing ammonia is usually removed by conventional methods such as aeration in towers, biological treatment and adsorption of the ammonium ion to the zeolite surface. However, these methods are less effective and relatively expensive. Therefore there is a need for alternative technologies that can improve the efficiency of ammonia removal from wastewater. This study aims to obtain the process of ammonia removal through a combination of absorption in the membrane contactor and the advance oxidation process in the hybrid plasma-ozone reactor. Wastewater containing ammonia used in the study was a synthetic wastewater with a concentration of about 800 ppm. In the experiment, the wastewater fi'om the reservoir was firstly passed into the membrane contactor on the shell side, and then mixed with ozone from the ozonator befbre entering the plasma reactor, and finally was circulated back to the reservoir. Meanwhile, the absorbent solution was sent to the lumen fiber in membrane contactor. Experimental results showed that the ammonia removal efficiency increases with increasing in circulation rate and temperature of the wastewater. The highest efficiency of ammonia removal obtained from the experimental results was 77%.展开更多
基金Project(ZDSY20120619093952884)supported by Shenzhen Strategic New Industry Development,China
文摘High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application.
基金Supported by the National Natural Science Foundation of China(No.30972260)~~
文摘Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the process of ammonia nitrogen removal ,related data between ammonia removal and five factors was received through multi-factor orthogonal test,and established relations model between the five factor and nitrogen removal. The results show that five-factors had significant effect on AR,and the best combinations for removing AR was temperature 30 ℃,pH=7.0,light intensity 6 000 lux,dissolved oxygen 5.0 mg/L and the fill rate 10%. According to the experimental data,equation model was proposed and coefficient of determination R2 =0.864 8,P<0.05. Samples T-test was done between the model predictions and the actual measured values.Test results showed that the significant difference of overall mean value sig. (2-tailed) was 0.978 (P>0.05),it Shows that had no significant difference between model predictions and the actual measured value,and model had a high degree of fitting.
文摘Removal of ammonia nitrogen and nitrate nitrogen by an heterotrophic nitrification-aerobic denitrification strain is an economical and effective method. In this article, a kind of heterotrophic nitrification-aerobic denitrification strain which has aerobic denitrification and heterotrophic nitrification ability was selected, and then was identified as rhodococcus sp. by 16S rRNA sequencing analysis and morphological observation. After that, carbon source utilization and nitrification- denitrification activity of this strain in different C/N, initial nitrogen concentration were studied. In addition, the assimilation and denitrification activities of ammonia and nitrate were also researched under the condition of nitrate and ammonia coexisted in the solution. The results show that the strain can grow in sodium acetate, glucose, sodium succinate and sodium citrate solutions, and it can not survive in sodium oxalate, sucrose and soluble starch solutions. Initial concentration and C/N were important for nitrogen removal rate. This strain can completely remove nitrate/ammonia when nitrate/ammonia concentration was lower than 15 mg l-1/80 mg l-1. the C/N of 10 and of 12 were the optimum C/N ratio in the nitrate and ammonia removal process respectively. pH value rose up sharply in the denitrification process and it increased relatively slowly in the nitrification process, which shows that pH is one of the most important factor inhibiting the denitrification removal process. Nitrite concentration was much higher in denitrification process than in nitrification process. In addition, this strain gave priority to utilizing ammonia as nitrogen source when ammonia and nitrate coexisted in the solution.
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR 2023 MD 059)the National Natural Science Foundation of China(No.41876135)。
文摘Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,which is vital to elucidate the underlying mechanism of ammonia nitrogen.In this study,clams R.philippinarum were exposed to ammonia nitrogen for 21 d at two environmentally relevant concentrations.The tandem mass tags approach(TMT)was applied to assay the differentially expressed proteins(DEPs)in clam gill tissues on the 3 rd and 21 st day.Finally,a total of 7263 proteins were identified.Bioinformatics analyses revealed that clam protein profiles changed in dose-and time dependent manner after ammonia nitrogen exposure.We inferred that the clams may face heavy challenges after ammonia exposure,such as unbalanced gender ratio,lysosomal disease,energy lack,neurological disorders,altered glutamine metabolism,increased lipid synthesis,and impaired immunity.Variation profiles of enzyme activities of glutaminase and glutamine synthase provided direct evidence to verify the related inference from proteome data.Most of the inferred toxic effects merit further study.This study identified important proteins related to ammonia nitrogen toxicity in the clam and indicated the severe stress of marine ammonia pollution on the healthy development of mollusc aquaculture.
基金supported by the National Natural Science Foundation of China[Nos.U21A20332,52103226,52202275,52203314,and 12204253]the Distinguished Young Scholars Fund of Jiangsu Province[No.BK20220061]the Fellowship of China Postdoctoral Science Foundation[No.2021M702382]。
文摘Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.
文摘AgBr/C_(3)N_(5)composite was prepared by in-situ precipitation of AgBr on the surface of nitrogen-rich carbon nitride(C_(3)N_(5)).The crystal phase,chemical composition,elemental composition,spectral absorption and photoelectron-hole separation of the composite were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectroscopy(UV-vis DRS)and photoluminescence spectroscopy(PL).The construction of AgBr and C_(3)N_(5)heterojunction could broaden the spectral response range,realize the efficient separation of photoelectrons and holes,and thus improve the photocatalytic performance.The photocatalytic performance of the composite material was studied by simulating inorganic ammonia nitrogen wastewater with NH_(4)Cl solution.The dosage of the composite material was 0.10 g,the initial mass concentration of NH_(4)Cl solution was 100 mg/L,and the initial pH was 10.0.The removal rate of ammonia nitrogen by the composite material reached 90.27%after 60 min of simulated visible light irradiation.After 5 cycles,the removal rate of ammonia nitrogen only declined by 0.12%.The composite material showed good photocatalytic performance and stability.The Z-scheme mechanism effectively retained the reduction and oxidation activities of photoelectrons and holes,which could change O_(2)and H2O to active groups such as superoxide radicals(·O_(2)-)and hydroxyl radicals(·OH),respectively,achieving efficient removal of inorganic ammonia nitrogen.
基金supported by the National Major Project of Water Pollution Control and Management Technology in China (No.2013ZX07202-007)the Shenzhen Science and Technology Project (No.GRCK2017042116092660)the National Natural Science Foundation of China (No.51308066)。
文摘This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance of NH4^+-N by composite adsorption particle was monitored under different raw material proportions and initial NH4^+-N concentration. Besides, adsorption kinetics and adsorption isotherms were investigated to reveal the adsorption mechanisms. The results showed that NH4^+-N was effectively removed under optimal proportion of biochar, foaming agent and crosslinker with 20%, 3%, and 3%, respectively. The optimal contact time was 150 min and the best removal efficiency was 88.6% at initial NH4^+-N concentration of 20 mg L^-1. The adsorption performance was well described by the second order kinetic model and Freundlich model. The novel clay/biochar composite adsorption particle in this study demonstrated a high potential for NH4^+-N removal from surface water.
基金The National Basic Research Program(973) of China(G1999022209)
文摘An experimental system of De-NO with plasma-catalyst(Cu zeolite) was established to investigate the differences between De- NO with plasma-catalyst and De-NO only with plasma, to provide the instruction for selecting appropriate catalyst and operating condition, The characteristics of De-NO with plasma and De-NO with plasma-catalyst were investigated comparatively by experiments. The experimental results show that De-NO with plasma-catalyst has high NO removal rate; Cu zeolite is an effective catalyst which can promote NO removal rate in plasma remarkably; De-NO with plasma-catalyst should be operated at low temperature and the temperature has opposite effects on the function of catalvst and plasma; water vapor and O2 can increase the NO removal rate.
基金Supported by the National Natural Science Foundation of China (21121064,20990224)National Science and Technology Ministry of China (2008BAE64B02)
文摘A simple and efficient sonochemical method was developed for the degradation of organic matter and ammonia nitrogen in azodicarbonamide wastewater.The effects of initial pH,ultrasound format and peripheral water level on the sonolysis of hydrazine,urea,COD and ammonia nitrogen were investigated.It is found that the initial pH has a significant influence on the degradation of hydrazine and ammonia nitrogen,whereas this impact to urea is relatively small.It also shows that a noticeable enhancement of ammonia nitrogen removal could be achieved in a proper intermittent ultrasound operation mode,i.e.,1/1 min on/off mode.The height difference between the periph-eral water level and the inner water level of the flask affects the efficiency of ultrasonic treatment as well.
基金Supported by the National Natural Science Foundation Key International Cooperation Project of China (No.50521140075), the 863 Attached Financial Supporting Item of Beijing Municipal Science and Technology Commission (No.Z0005186040421) and the Doctor Subject Soecial Financial Supporfing Item of High College (No.20060005002).
文摘In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the to- tal nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods,this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia,nitrate,and total nitrogen in the effluent.To verify the simulation results,pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results,which proved the validity of the developed model. The sensitivity of the model predictions was analyzed.After verification of the validity,the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period,the effluent total nitrogen concentrations were all below 5mg·L -1 ,with more than 90%removal efficiency.
文摘The landfill of municipal solid waste(MSW) could be regarded as denitrification reactor and involved in ammonia nitrogen biological removal process. In this research, the process was applied to municipal solid waste collected in Shanghai, China, which was characterized by high food waste content. The NH + 4 removal efficiency in the system of SBR nitrifying reactor followed by fresh and matured landfilled waste layer in series was studied. In the nitrifying reactor, above 90% of NH + 4 in leachate was oxidized to NO - 2 and NO - 3. Then high concentrated NO - 2 and NO - 3 were removed in the way of denitrification process in fresh landfilled waste layer. At the same time, degradation of fresh landfilled waste was accelerated. Up to the day 120, 136.5 gC/(kg dry waste) and 17.9 gN/(kg dry waste) were converted from waste layer. It accounted for 50.15% and 86.89% of the total carbon and nitrogen content of preliminary fresh waste, which was 4.42 times and 5.17 times higher than that of reference column respectively. After filtering through matured landfilled waste, BOD 5 concentration in leachate dropped to below 100 mg/L, which would not affect following nitrification adversely. Because the matured landfilled waste acted as a well methanogenic reactor, 23% of carbon produced accumulatively from fresh landfilled waste degradation was converted into CH 4.
文摘This paper presents lab-scale experiment carried out to evaluate the correlation between ammonia nitrogen (NH3-N) and p-toluidine using sequencing batch reactor treating synthetic p-toluidine wastewater. The profiles of NH3-N and p-toluidine were traced under the concentration of sucrose in the influent varied from 0 to 500 mg/L, aerated airflow varied from 0.6 to 1.2 L/min and temperature varied from 10 to 25℃, respectively. The results showed that the concentration of NH3-N turned from increase to decrease when p-toluidine was nearly completely biodegraded, so the profile of NH3-N could clearly indicate the endpoint of p-toluidine biodegradation. And the profile of NH3-N was not influenced by the sucrose in the influent, aerated airflow and temperature. It is showed that using ammonia nitrogen as monitoring and control parameter is feasible and reliable and has promising application in amine wastewater treatment by SBR.
基金Supported by Project for Achievement Transformation of High and New Technology in Shanghai City(201405267)
文摘The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of ammonia nitrogen by sodium hypochlorite accorded with a pseudo first-order kinetics model,and the influencing factors included Na Cl O dosage,initial concentration of ammonia nitrogen,salinity,temperature,and so on. When Na Cl O dosage was 0. 6%( MCl∶ MN= 13. 76),the reaction rate constant was up to 0. 015 75 min^(-1). The higher the initial concentration of ammonia nitrogen was,the worse the effect of oxidation reaction was. When the initial concentration did not exceed 45 mg/L,the effect on oxidation reaction rate constant increased with the increase of the initial concentration. Low salinity had no effect on ammonia nitrogen oxidation.When salinity was higher than 2. 0%,the inhibition effect on ammonia nitrogen oxidation would increase,and the reaction rate constant decreased obviously with the increase of salinity. The improvement of reaction temperature was beneficial to ammonia oxidation degradation. As temperature increased from 10 to 35 ℃,the reaction rate constant rose from 0. 00188 to 0. 01043 min^(-1).
基金Supported by National Key Project of Science and Technology of Water Pollution Control and Management(2009ZX07212-001-04)
文摘[ Objective] The study aimed to discuss the feasibility and optimal conditions of removing ammonia nitrogen by using microwave coupled with active carbon. [ Method ] In the study, a novel process, microwave radiation coupled with active carbon, was applied to remove ammonia nitro- gen from wastewater, and the influences of solution pH, air conditions, active carbon usage, microwave power and time on the removal effect of ammonia nitrogen were studied. [ Result] Microwave coupled with active carbon can remove ammonia nitrogen efficiently, and pumping air into the wastewater can also increase the removal rate of ammonia nitrogen to a certain extent. Higher pH, intensive microwave power and longer treating time could also increase the removal rate of ammonia nitrogen using microwave radiation coupled with active carbon, whereas the usage of active carbon contributed a small impact. It was proved that microwave coupled with active carbon was an effective method for the removal of ammonia ni- trogen from wastewater. Meanwhile, the orthogonal experiment results showed that the removal rate of ammonia nitrogen reached 92.5% under the optimal conditions, that is, the usage of active carbon was 0.5 g, pH = 11, microwave radiation power was 850 W, and microwave action time was 4 minutes. [ Conclusion] The research provided a new method to remove ammonia nitrogen from wastewater, namely microwave coupled with ac- tive carbon.
基金sponsored by the National Natural Science Foundation of China(52176193)the National Key Research and Development Program of China(2019YFD1100602)+1 种基金the Shandong Provincial Natural Science Foundation,China(ZR2020ME184)the SDUT & Zhangdian City Integration Development Project(2021JSCG0013)。
文摘This study aimed to investigate the mechanism of nitrogen doping,migration,and conversion during ammonia torrefaction and also explore the evolution law of the chemical structure of cellulose.The results showed that the ammonia torrefaction pretreatment could significantly optimize the distribution of nitrogen and oxygen elements in cellulose.The carbon skeleton first captured the active nitrogenous radicals to form-NHn-N,and pyridine-N and pyrrole-N originated from the conversion of-NHn-N.The existence of C=O played a major role in the immobilization of nitrogen.The nitrogen in bio-oil exists mainly in the form of five-and six-membered heterocycles.The correlation analysis showed that the main precursors for the formation of nitrogenous heterocyclic compounds were five-membered Oheterocyclic compounds.Finally,the product distribution characteristics in the torrefaction-pyrolysis systems were summarized,and the nitrogen doping and conversion mechanisms were proposed.This study expanded the boundaries of cellulose pretreatment and the production of high-value chemicals.
基金Supported by the National Natural Science Foundation of China(21506078).
文摘Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min.
文摘The kinetics of denitrogenation from liquid steel was studied by using an oxygen-nitrogen analysis system(LECO TC-436) under 1600 degreesC similar to 2813 degreesC conditions. The results show that when [S]=0.005%, nitrogen removal was controlled by nitrogen transfer in liquid diffusion layer, when [S]=0.012% and 0.140%, it was controlled by both nitrogen transfer in liquid diffusion layer and the chemical reaction at the liquid-gas interface below 2250 degreesC, and by nitrogen transfer in liquid diffusion layer under 2250 degreesC similar to 2813 degreesC conditions. The activation energy E-a was 57 kJ/mol for 0.0050%[S], 95 kJ/mol for 0.012%[S], 165 kJ/mol for 0.140%[S]. The resistance of sulphur on nitrogen removal decreased with the temperature rose, and disappeared at 2630 degreesC. Based on the results obtained, it has been answered why the nitrogen in liquid steel can be decreased rapidly by carbon-oxygen reaction under very high oxygen and sulphur content conditions during the BOF, EAF, VOD and AOD steelmaking processes.
基金Supported by Youth Innovative Talents Project of Provincial Major Scientific Research Project of Guangdong University in 2015(2015KQNCX225)Social Development Project of Dongguan City in2014(2014106101025)Youth Fund Project of City College of Dongguan University of Technology in 2015(2015QJZ008Z)
文摘Red brick,cement brick and ceramsite were taken as the substrate of constructed wetland,and removal effect of ammonia nitrogen by the mixed substrate under different combination manners and aeration condition was explored. Research results showed that cement brick had the best removal effect on ammonia nitrogen,followed by red brick and ceramsite; aeration was favorable for the removal of ammonia nitrogen by each substrate and the mixed substrate; removal rate sequence of ammonia nitrogen by each mixed substrate was red brick + cement brick > red brick + cement brick + ceramsite > cement brick + ceramsite > red brick + ceramsite; the combination of red brick + cement brick had the best removal effect on ammonia nitrogen in domestic sewage. Comprehensively considering,the mixed substrate of red brick + cement brick has better stability and higher ammonia nitrogen removal rate,and it is suitable as the mixed adsorption substrate of constructed wetland.
基金The Project of Scientific Research Base and Scientific Innovation Platform of Beijing Municipal Education Commission (No.PXM2008-014204-050843)the Project of Beijing Science and Technology Committee (No.D07050601500000)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (No.RCEES-QN-200706)the Special Funds for Young Scholars of RCEES,CAS.
文摘Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feeding process achieves over 80% total nitrogen (TN) removal efficiency, but the TN removal efficiency of the A/O process is only 40%. Moreover, filamentous sludge bulking can be well restrained in the step-feeding process. Given the conditions of a returned sludge ratio of 100% and a nitrifying liquor recycle ratio of 200%, the TN removal efficiency is 78.32% in the A/O process, but the sludge volume index (SVI) value increases to 143 mL/g. In the step-feeding process, the SVI is only 94.4 mL/g when the TN removal efficiency reaches 81. 1%. The step-feeding process has distinct advantages over the A/O process in the aspects of practicability, nitrogen removal and operating stability.
文摘Wastewater containing high concentrations of ammonia can be harmful to aquatic life and degrade the water quality. Wastewater containing ammonia is usually removed by conventional methods such as aeration in towers, biological treatment and adsorption of the ammonium ion to the zeolite surface. However, these methods are less effective and relatively expensive. Therefore there is a need for alternative technologies that can improve the efficiency of ammonia removal from wastewater. This study aims to obtain the process of ammonia removal through a combination of absorption in the membrane contactor and the advance oxidation process in the hybrid plasma-ozone reactor. Wastewater containing ammonia used in the study was a synthetic wastewater with a concentration of about 800 ppm. In the experiment, the wastewater fi'om the reservoir was firstly passed into the membrane contactor on the shell side, and then mixed with ozone from the ozonator befbre entering the plasma reactor, and finally was circulated back to the reservoir. Meanwhile, the absorbent solution was sent to the lumen fiber in membrane contactor. Experimental results showed that the ammonia removal efficiency increases with increasing in circulation rate and temperature of the wastewater. The highest efficiency of ammonia removal obtained from the experimental results was 77%.