An innovative approach based on water environmental capacity for non-point source NPS pollution removal rate estimation was discussed by using both univariate and multivariate data analysis.Taking Shenzhen city as the...An innovative approach based on water environmental capacity for non-point source NPS pollution removal rate estimation was discussed by using both univariate and multivariate data analysis.Taking Shenzhen city as the study case a 67% to 74% NPS pollutant load removal rate can lead to meeting the chemical oxygen demand COD pollution control target for most watersheds.In contrast it is hardly to achieve the ammonia nitrogen NH4-N total phosphorus TP and biological oxygen demand BOD5 pollution control target by simply removing NPS pollutants. This highlights that the pollution control strategies should be taken according to different pollutant species and sources in different watersheds rather than one-size-fits-all .展开更多
The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental...The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental tensile stresses effectively decrease the critical grinding stresses and increase the stress intensity factors of machining cracks,the honing process can be carried out easily.The results show that honing can be an efficient machining method for brittle materials.展开更多
The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the g...The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.展开更多
In the present study,a novel method of surface finish improvement is proposed using shot blasting of soda lime(SBSL)beads on the Mg-AZ31 alloy.The effect of the soda blasting process parameters,such as blast pressure,...In the present study,a novel method of surface finish improvement is proposed using shot blasting of soda lime(SBSL)beads on the Mg-AZ31 alloy.The effect of the soda blasting process parameters,such as blast pressure,stand-off distance,and blast duration,have been studied in-response of material removal rate(MRR)and surface roughness(SR)and corresponding statistical models have been obtained.The multi-objective optimization has also been performed to obtain parameters for maximum MRR and minimum SR.The corrosion behavior of the treated specimens has been performed to study their in-vitro biodegradability in simulated body fluid(SBF)for 1,3,7,10,15,and 21 days.The wettability study of the SBSL treated samples has been investigated using sessile drop methodology.Further,cell adhesion test has also been performed to study the biocompatibility characteristics of the SBSL treated samples using Huh7 liver cell lines.Based on obtained quantitative data as well as scanning electron microscopy analysis of treated samples,the SBSL treatment of the AZ31 alloy has been found highly useful in producing biocompatibility surfaces along with desirable morphological features.展开更多
The mechanical characters of CdZnTe crystal were investigated by nanoscratch tests, and the effects of mechanical anisotropy on the material removal rate and surface quality were studied by polishing tests. There is a...The mechanical characters of CdZnTe crystal were investigated by nanoscratch tests, and the effects of mechanical anisotropy on the material removal rate and surface quality were studied by polishing tests. There is a peak of frictional coefficient at the early stage of scratch, and increasing the vertical force will result in the increase of peak value correspondingly. The fluctuation phenomenon of frictional coefficient is generated at high vertical force. The lateral forces show the apparent twofold and threefold symmetries on (110) and (111) planes, respectively. To obtain high surface quality, low polishing pressure and hard direction (〈 T10 〉 directions on (110) plane and 〈 112 〉 directions on (111) plane) should be selected, and to achieve high material removal rate, high polishing pressure and soft direction (〈001〉 directions on (110) plane and 〈 121 〉 directions on (111) plane) should be selected.展开更多
[ Objective] The study aimed to discuss the removal rate of phosphorus by different constructed wetland substrates. [ Methed] Based on static experiments, we analyzed the removal rate and characteristics of phosphorus...[ Objective] The study aimed to discuss the removal rate of phosphorus by different constructed wetland substrates. [ Methed] Based on static experiments, we analyzed the removal rate and characteristics of phosphorus by different constructed wetland substrates like steel slag, cin- der slag, shale, boiler slag, soil and gravel. [ Result~ The maximum adsorption of phosphorus by various substrates showed as follows, steel slag 〉 cinder slag 〉 shale 〉 boiler slag 〉 soil 〉 gravel. When the initial concentration of phosphorus was 5 mg/L, the removal rate of phosphorus by the steel slag, cinder slag, shale, boiler slag, soil and gravel was 99.76%, 85.8%, 71.2%, 63.0%, 46.8% and 11.7% respectively. It is suggested that shale and boiler slag can be used as the substrate of subsurface-flow constructed wetlands; cinder slag can be chosen as a renewable sub- strate for intensifying phosphorus removal; steel slag could be used at the end of subsurface-flow constructed wetlands for treating TP in outflows. [Concluslon] The research could provide theoretical references for choosing a suitable substrate for constructed wetlands to remove phosphorus in future.展开更多
The transformation and removal of nitrogen was studied in a pilot high rate pond with a surface area of 10.2 m2 and water depth of 60 cm. The pilot unit received wastewater from an existing field scale primary faculta...The transformation and removal of nitrogen was studied in a pilot high rate pond with a surface area of 10.2 m2 and water depth of 60 cm. The pilot unit received wastewater from an existing field scale primary facultative pond at the University of Dar es Salaam. Wastewater samples were collected from the influent and effluent of high rate pond and were analyzed for physical-chemical parameters in the laboratory and in situ. An appropriate model complexity was selected, from which a conceptual model was then developed to model various processes in the system using STELLA 6.0.1 software. The study demonstrated that dominant nitrogen transformation processes in HRP were nitrification and denitrification, which transformed 0.95 and 0.87 gN/m2·d, respectively. These were followed by mineralization (0.37 gN/m2·d), ammonia uptake by microorganisms (0.34 gN/m2·d), volatilization (0.30 gN/m2·d), sedimentation (0.24 gN/m2·d), and regeneration (0.15 gN/m2·d). Uptake of nitrate was not observed because of microorganisms preference for ammonia, which was abundant in the pond. The major nitrogen transformation mechanisms in high rate pond were denitrification, net sedimentation and volatilization, which accounted for 69.1%, 7.1% and 23.8% of the total permanent removal mechanisms of nitrogen in High Rate Pond.展开更多
This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data colle...This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data collected from an experimental of EDM process, whereas several research objectives have been outlined such as experimenting machining material for selected gap current, identifying machining parameters for ANN variables and selecting appropriate size of data selection. The experimental data (input variables) of copper-electrode and steel-workpiece is based on a selected gap current where pulse on time, pulse off time and sparking frequency have been chosen at optimum value of Material Removal Rate (MRR). In this paper, the result has significantly demonstrated that the ANN model is capable of predicting the MRR with low percentage prediction error when compared with the experimental result.展开更多
[Objective] The research aimed at optimizing protein removal method and condition of polysaccharide extracts from Phellinus Linteus and comparing the effects of two methods on protein removal.[Method] Free proteins in...[Objective] The research aimed at optimizing protein removal method and condition of polysaccharide extracts from Phellinus Linteus and comparing the effects of two methods on protein removal.[Method] Free proteins in polysaccharide from Phellinus Linteus were removed using Sevag method and TCA method.[Result] The TCA method was better than Sevag method,and the optimum protein removal condition was treated with 5% TCA for 30 min and for three times,under that condition,the protein removal rate attained 82% while the polysaccharide loss rate was only 10.8%.[Conclusion] The TCA method was a better way to remove proteins of polysaccharide from Phellinus Linteus.展开更多
Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were ...Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were investigated and the process conditions were optimized using response surface methodology (RSM). The results show that the effects of roasting temperature and holding time on the removal rate of F and Cl are the most significant, and the effect of stirring speed is the second. The defluorination rate reaches 92.6% while the dechlorination rate reaches 90.2%, under the process conditions of roasting temperature of 700 °C, holding time of 80 min and stirring speed of 120 r/min. The results indicate that the removal of F and Cl from fuming furnace production of zinc oxide fumes using microwave roasting process is feasible and reliable.展开更多
Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the p...Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the process of ammonia nitrogen removal ,related data between ammonia removal and five factors was received through multi-factor orthogonal test,and established relations model between the five factor and nitrogen removal. The results show that five-factors had significant effect on AR,and the best combinations for removing AR was temperature 30 ℃,pH=7.0,light intensity 6 000 lux,dissolved oxygen 5.0 mg/L and the fill rate 10%. According to the experimental data,equation model was proposed and coefficient of determination R2 =0.864 8,P<0.05. Samples T-test was done between the model predictions and the actual measured values.Test results showed that the significant difference of overall mean value sig. (2-tailed) was 0.978 (P>0.05),it Shows that had no significant difference between model predictions and the actual measured value,and model had a high degree of fitting.展开更多
In this paper, glasshouse experiments were conducted to determine the accumulation, distribution and transformation of DDTs and HCHs by maize under pot culture conditions. The culture soil was spiked with the organic ...In this paper, glasshouse experiments were conducted to determine the accumulation, distribution and transformation of DDTs and HCHs by maize under pot culture conditions. The culture soil was spiked with the organic pollutants and samples were collected in different durations. Analysis of the plants at harvest showed that the selected plant varied widely in their ability to remove and translo- cate DDTs and HCHs from the soil, the bioconcentration factor ranged from 0.004 to 0.027 for the shoot and from 0.036 to 0.097 for the roots, and the translocation factors were lower than 0.1 with variation between DDTs and HCHs, but no signifi- cant differences were observed. DDTs appeared to have accumulated by both pas- sive adsorption and active absorption, p,p'-DDT and p,p'-DDE were the major metabolite and the transformation was mediated by reductive dehalogenation, the affinity of the OCPs for lipids is one of the major factors affecting their uptake and translocation within the plants.展开更多
Through a series of experiments using denitrifying phosphorus-accumulating sludge in sequencing batch reactors (SBRs), the variations of the intracellular polymers during the anaerobic phosphorus release process at ...Through a series of experiments using denitrifying phosphorus-accumulating sludge in sequencing batch reactors (SBRs), the variations of the intracellular polymers during the anaerobic phosphorus release process at different pH values were compared, the probable reasons for different performances of phosphorus removal were examined, and system operations in a typical cycle were investigated. The results show that the phosphorus removal rate was positively correlated with pH values in a range of 6.5-8.5. When the pH value was 8.0, the anaerobic phosphorus release rate and anoxic phosphorus uptake rate of the activated sludge were 20.95 mg/(g, h) and 23.29 mg/(g, h), respectively; the mass fraction of poly-13-hydroxybutyrate (PHB) increased to 62.87 mg/g under anaerobic conditions; the mass fraction of polyphosphate was 92.67 mg/g under anoxic conditions; and the effluent concentration of total phosphorus (TP) was 1.47 mg/L. With the increase of pH, the mass fraction of acetic acid and PHB also increased, and the absorption rate of acetic acid was equal to the disintegration rate of polyphosphate. When the pH value was above 8.0, biological phosphorus removal was achieved by chemical phosphorus precipitation, and the phosphorus removal rate decreased.展开更多
[ Objective] The study aimed to discuss the feasibility and optimal conditions of removing ammonia nitrogen by using microwave coupled with active carbon. [ Method ] In the study, a novel process, microwave radiation ...[ Objective] The study aimed to discuss the feasibility and optimal conditions of removing ammonia nitrogen by using microwave coupled with active carbon. [ Method ] In the study, a novel process, microwave radiation coupled with active carbon, was applied to remove ammonia nitro- gen from wastewater, and the influences of solution pH, air conditions, active carbon usage, microwave power and time on the removal effect of ammonia nitrogen were studied. [ Result] Microwave coupled with active carbon can remove ammonia nitrogen efficiently, and pumping air into the wastewater can also increase the removal rate of ammonia nitrogen to a certain extent. Higher pH, intensive microwave power and longer treating time could also increase the removal rate of ammonia nitrogen using microwave radiation coupled with active carbon, whereas the usage of active carbon contributed a small impact. It was proved that microwave coupled with active carbon was an effective method for the removal of ammonia ni- trogen from wastewater. Meanwhile, the orthogonal experiment results showed that the removal rate of ammonia nitrogen reached 92.5% under the optimal conditions, that is, the usage of active carbon was 0.5 g, pH = 11, microwave radiation power was 850 W, and microwave action time was 4 minutes. [ Conclusion] The research provided a new method to remove ammonia nitrogen from wastewater, namely microwave coupled with ac- tive carbon.展开更多
Two-year field experiments were conducted at Linqing, Yellow River valley of China, to study the plant response to the removal of early fruiting branches in transgenic Bt (Bacillus thuringiensis) cotton (Gossypium ...Two-year field experiments were conducted at Linqing, Yellow River valley of China, to study the plant response to the removal of early fruiting branches in transgenic Bt (Bacillus thuringiensis) cotton (Gossypium hirsutum L.) from 2003 to 2004. Plants were undamaged and treated by removing two basal fruiting branches (FB) at squaring to form the control and the removal treatment, respectively. The plant height, leaf area (LA), dry weight of fruiting forms (DWFF), the number of fruiting nodes (NFN), photosynthetic (Pn) rate, and levels of leaf chlorophyll (Chl), N, P, K, and Cry lAc protein in main- stem leaves were measured at a 10- or 20-d interval after FB removal, and the sink/source ratio as indicated by NFN/LA and DWFF/LA was determined. FB removal significantly increased the plant height, LA, and plant biomass in both years. Lint yields were increased 7.5 and 5.2% by removal compared with their controls in 2003 and 2004, respectively. Significant increases in boll size (5.7 and 5.1%) were also observed in removal than in control for both years. Either NFN/LA or DWFF/LA was significantly reduced by removal before 40 d after removal; however, both NFN/LA and DWFF/LA were significantly enhanced by FB removal at 80 d after removal compared to the untreated control. There was no significant difference in fiber quality in the first two harvests between removal and control, but fiber strength and micronarie in the third harvest were significantly improved by FB removal. In terms of leaf Chl, Pn rate, levels of total N, P, and K in late season, leaf senescence was considerably delayed by FB removal. Levels of CrylAc protein in the fully expanded young leaves were considerably higher in FB-excised plants than in control, indicating FB removal enhanced CrylAc expression. It is suggested that the yield and quality improvement with FB removal may be attributed to the increased NFN/LA or DWFF/LA in late season and delayed leaf senescence, respectively. FB removal can be a potential practice incorporated into the intensive cultivation system for enhancing transgenic Bt cotton production.展开更多
When biochar made from waste pallet was added to treated livestock wastewater, the total nitrogen and ammonium ion concentrations decreased, with removal rates over 10 days of about 60% and 30%, respectively. Bacteria...When biochar made from waste pallet was added to treated livestock wastewater, the total nitrogen and ammonium ion concentrations decreased, with removal rates over 10 days of about 60% and 30%, respectively. Bacteria were isolated with high ammonium removal ability and they were identified based on their 16S rRNA gene sequences. Anaerobic denitrifying <i>Cronobacter</i> spp. was isolated from the biochar used for water purification. When each strain was cultured in a liquid medium containing ammonium sulfate (initial ammonium concentration 30 mg/L), the highest ammonium removal rates were 83.8% - 96.5%. Organic acids were more effective than carbohydrates as sole carbon sources for nitrogen removal from wastewater. The absorbance at 660 nm increased with nitrogen removal, indicating that cells proliferated, so it was presumed that ammonium was taken up by assimilation.展开更多
In this paper three controllers for A/O process are developed, including a DO cascade controller, an external carbon flow rate controller and an internal recycling flow rate controller. The objective of the different ...In this paper three controllers for A/O process are developed, including a DO cascade controller, an external carbon flow rate controller and an internal recycling flow rate controller. The objective of the different controllers is to control the nitrate and ammonia concentration. Simulation study demonstrated that these controllers could efficiently control nitrogen removal and meet stricter effluent quality standards at a minimum cost.展开更多
In order to achieve high-efficiency alkali conversion and impurity removal of high titanium slag under the condition of low alkali concentration,a new way of oxygen-rich alkali conversion in KOH solution was proposed....In order to achieve high-efficiency alkali conversion and impurity removal of high titanium slag under the condition of low alkali concentration,a new way of oxygen-rich alkali conversion in KOH solution was proposed.The conversion law of element occurrence state and the influence of the conversion conditions on the titanium conversion rate and removal rate of silicon and aluminum were studied.The results showed that the KOH solution converted the titanium oxide in high titanium slag into whisker-like potassium titanate.Silicon and aluminum elements were dissolved into the solution.Under the following conditions,KOH concentration of 6 mol/L,conversion temperature of 260℃,initial oxygen partial pressure of 2 MPa,liquid−solid ratio of 35 mL/g,conversion time of 4 h,and high titanium slag particle size of 48−74μm,the conversion rate of titanium was 97.0%,and the removal rates of silicon and aluminum were 90.2%and 76.2%,respectively.Oxygen-rich alkali conversion product was converted to rutile with a TiO_(2) grade of 99.1%by acid hydrolysis conversion.展开更多
The recovery of indium from waste indium tin oxide (ITO) target has great significance for the economy and environment.Based on our previous study on the optimization of acid leaching technique,the present study foc...The recovery of indium from waste indium tin oxide (ITO) target has great significance for the economy and environment.Based on our previous study on the optimization of acid leaching technique,the present study focuses on tin removal via zinc substitution and indium recovery from a tin-free leach solution.The results show that when the amount of added zinc powder and reaction time increase,the tin removal effect can be improved.The optimal conditions obtained are as follows:additional content of zinc powder from 20 g/L to 25 g/L,reaction temperature of 60 ℃,and reaction time from 3 h to 4 h.Under this condition,the tin removal rate exceeds 98%,and the tin content in the tin removal solution is lower than 0.05 g/L.After tin removal,the substitution time could be reduced from 3-5 d to 1-2 d by neutralizing the residual acid by using alkaline residue and maintaining the pH value less than 2.The indium recovery rate is also improved when this condition is used.The indium content in the tin residue is reduced to lower than 0.1% and the acid-insoluble β-SnO2 could be obtained via the strong nitric acid leaching of the indium-containing tin residue.Indium could be recovered from ITO with a high purity of 99.995% via electrorefining.展开更多
基金The National Science and Technology Major Project of China(No.2012ZX07301-001)the Shenzhen Environmental Research Project,China Postdoctoral Science Foundation(No.2013M530642)
文摘An innovative approach based on water environmental capacity for non-point source NPS pollution removal rate estimation was discussed by using both univariate and multivariate data analysis.Taking Shenzhen city as the study case a 67% to 74% NPS pollutant load removal rate can lead to meeting the chemical oxygen demand COD pollution control target for most watersheds.In contrast it is hardly to achieve the ammonia nitrogen NH4-N total phosphorus TP and biological oxygen demand BOD5 pollution control target by simply removing NPS pollutants. This highlights that the pollution control strategies should be taken according to different pollutant species and sources in different watersheds rather than one-size-fits-all .
文摘The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental tensile stresses effectively decrease the critical grinding stresses and increase the stress intensity factors of machining cracks,the honing process can be carried out easily.The results show that honing can be an efficient machining method for brittle materials.
基金Project(2009ZX07315-005) supported by the National Water Pollution Controlled and Treatment Great Special of China
文摘The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively.
文摘In the present study,a novel method of surface finish improvement is proposed using shot blasting of soda lime(SBSL)beads on the Mg-AZ31 alloy.The effect of the soda blasting process parameters,such as blast pressure,stand-off distance,and blast duration,have been studied in-response of material removal rate(MRR)and surface roughness(SR)and corresponding statistical models have been obtained.The multi-objective optimization has also been performed to obtain parameters for maximum MRR and minimum SR.The corrosion behavior of the treated specimens has been performed to study their in-vitro biodegradability in simulated body fluid(SBF)for 1,3,7,10,15,and 21 days.The wettability study of the SBSL treated samples has been investigated using sessile drop methodology.Further,cell adhesion test has also been performed to study the biocompatibility characteristics of the SBSL treated samples using Huh7 liver cell lines.Based on obtained quantitative data as well as scanning electron microscopy analysis of treated samples,the SBSL treatment of the AZ31 alloy has been found highly useful in producing biocompatibility surfaces along with desirable morphological features.
基金supported by the Key Project of the National Natural Science Foundation of China (No. 50535020)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University (No. SKLSP200902)
文摘The mechanical characters of CdZnTe crystal were investigated by nanoscratch tests, and the effects of mechanical anisotropy on the material removal rate and surface quality were studied by polishing tests. There is a peak of frictional coefficient at the early stage of scratch, and increasing the vertical force will result in the increase of peak value correspondingly. The fluctuation phenomenon of frictional coefficient is generated at high vertical force. The lateral forces show the apparent twofold and threefold symmetries on (110) and (111) planes, respectively. To obtain high surface quality, low polishing pressure and hard direction (〈 T10 〉 directions on (110) plane and 〈 112 〉 directions on (111) plane) should be selected, and to achieve high material removal rate, high polishing pressure and soft direction (〈001〉 directions on (110) plane and 〈 121 〉 directions on (111) plane) should be selected.
基金Supported by National Natural Science Foundation of China(50278016)
文摘[ Objective] The study aimed to discuss the removal rate of phosphorus by different constructed wetland substrates. [ Methed] Based on static experiments, we analyzed the removal rate and characteristics of phosphorus by different constructed wetland substrates like steel slag, cin- der slag, shale, boiler slag, soil and gravel. [ Result~ The maximum adsorption of phosphorus by various substrates showed as follows, steel slag 〉 cinder slag 〉 shale 〉 boiler slag 〉 soil 〉 gravel. When the initial concentration of phosphorus was 5 mg/L, the removal rate of phosphorus by the steel slag, cinder slag, shale, boiler slag, soil and gravel was 99.76%, 85.8%, 71.2%, 63.0%, 46.8% and 11.7% respectively. It is suggested that shale and boiler slag can be used as the substrate of subsurface-flow constructed wetlands; cinder slag can be chosen as a renewable sub- strate for intensifying phosphorus removal; steel slag could be used at the end of subsurface-flow constructed wetlands for treating TP in outflows. [Concluslon] The research could provide theoretical references for choosing a suitable substrate for constructed wetlands to remove phosphorus in future.
文摘The transformation and removal of nitrogen was studied in a pilot high rate pond with a surface area of 10.2 m2 and water depth of 60 cm. The pilot unit received wastewater from an existing field scale primary facultative pond at the University of Dar es Salaam. Wastewater samples were collected from the influent and effluent of high rate pond and were analyzed for physical-chemical parameters in the laboratory and in situ. An appropriate model complexity was selected, from which a conceptual model was then developed to model various processes in the system using STELLA 6.0.1 software. The study demonstrated that dominant nitrogen transformation processes in HRP were nitrification and denitrification, which transformed 0.95 and 0.87 gN/m2·d, respectively. These were followed by mineralization (0.37 gN/m2·d), ammonia uptake by microorganisms (0.34 gN/m2·d), volatilization (0.30 gN/m2·d), sedimentation (0.24 gN/m2·d), and regeneration (0.15 gN/m2·d). Uptake of nitrate was not observed because of microorganisms preference for ammonia, which was abundant in the pond. The major nitrogen transformation mechanisms in high rate pond were denitrification, net sedimentation and volatilization, which accounted for 69.1%, 7.1% and 23.8% of the total permanent removal mechanisms of nitrogen in High Rate Pond.
文摘This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data collected from an experimental of EDM process, whereas several research objectives have been outlined such as experimenting machining material for selected gap current, identifying machining parameters for ANN variables and selecting appropriate size of data selection. The experimental data (input variables) of copper-electrode and steel-workpiece is based on a selected gap current where pulse on time, pulse off time and sparking frequency have been chosen at optimum value of Material Removal Rate (MRR). In this paper, the result has significantly demonstrated that the ANN model is capable of predicting the MRR with low percentage prediction error when compared with the experimental result.
基金Supported by Youth Fund Project in Sichuan Province(2008ZQ026-072)Support Science and Technology Project of Sichuan Province(2008FZ0157)~~
文摘[Objective] The research aimed at optimizing protein removal method and condition of polysaccharide extracts from Phellinus Linteus and comparing the effects of two methods on protein removal.[Method] Free proteins in polysaccharide from Phellinus Linteus were removed using Sevag method and TCA method.[Result] The TCA method was better than Sevag method,and the optimum protein removal condition was treated with 5% TCA for 30 min and for three times,under that condition,the protein removal rate attained 82% while the polysaccharide loss rate was only 10.8%.[Conclusion] The TCA method was a better way to remove proteins of polysaccharide from Phellinus Linteus.
基金Project(51104073)supported by the National Natural Science Foundation of ChinaProject(2013AA064003)supported by the High-tech Research and Development Program of China+1 种基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProject(2012HB008)supported by Yunnan Province Young Academic Technology Leader Reserve Talents,China
文摘Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were investigated and the process conditions were optimized using response surface methodology (RSM). The results show that the effects of roasting temperature and holding time on the removal rate of F and Cl are the most significant, and the effect of stirring speed is the second. The defluorination rate reaches 92.6% while the dechlorination rate reaches 90.2%, under the process conditions of roasting temperature of 700 °C, holding time of 80 min and stirring speed of 120 r/min. The results indicate that the removal of F and Cl from fuming furnace production of zinc oxide fumes using microwave roasting process is feasible and reliable.
基金Supported by the National Natural Science Foundation of China(No.30972260)~~
文摘Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the process of ammonia nitrogen removal ,related data between ammonia removal and five factors was received through multi-factor orthogonal test,and established relations model between the five factor and nitrogen removal. The results show that five-factors had significant effect on AR,and the best combinations for removing AR was temperature 30 ℃,pH=7.0,light intensity 6 000 lux,dissolved oxygen 5.0 mg/L and the fill rate 10%. According to the experimental data,equation model was proposed and coefficient of determination R2 =0.864 8,P<0.05. Samples T-test was done between the model predictions and the actual measured values.Test results showed that the significant difference of overall mean value sig. (2-tailed) was 0.978 (P>0.05),it Shows that had no significant difference between model predictions and the actual measured value,and model had a high degree of fitting.
基金Supported by the Youth Innovation Fund of Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences(2009QNJJN01)the Science and Technology Innovation Fund of Inner Mongolia(2011CXJJN01)the Application Technology Research and Development Program from Department of Science and Technology of Inner Mongolia(20110516)~~
文摘In this paper, glasshouse experiments were conducted to determine the accumulation, distribution and transformation of DDTs and HCHs by maize under pot culture conditions. The culture soil was spiked with the organic pollutants and samples were collected in different durations. Analysis of the plants at harvest showed that the selected plant varied widely in their ability to remove and translo- cate DDTs and HCHs from the soil, the bioconcentration factor ranged from 0.004 to 0.027 for the shoot and from 0.036 to 0.097 for the roots, and the translocation factors were lower than 0.1 with variation between DDTs and HCHs, but no signifi- cant differences were observed. DDTs appeared to have accumulated by both pas- sive adsorption and active absorption, p,p'-DDT and p,p'-DDE were the major metabolite and the transformation was mediated by reductive dehalogenation, the affinity of the OCPs for lipids is one of the major factors affecting their uptake and translocation within the plants.
基金supported by the Research Program of the Liaoning Educational Committee(Grant No.LJZ2016014)the Natural Science Foundation of Liaoning Province(Grant No.201501069)+1 种基金the Research Program of the Ministry of Housing and Urban-Rural Development(Grant No.2015-K7-007)the National Natural Science Foundation of China(Grants No.51776131 and 51678375)
文摘Through a series of experiments using denitrifying phosphorus-accumulating sludge in sequencing batch reactors (SBRs), the variations of the intracellular polymers during the anaerobic phosphorus release process at different pH values were compared, the probable reasons for different performances of phosphorus removal were examined, and system operations in a typical cycle were investigated. The results show that the phosphorus removal rate was positively correlated with pH values in a range of 6.5-8.5. When the pH value was 8.0, the anaerobic phosphorus release rate and anoxic phosphorus uptake rate of the activated sludge were 20.95 mg/(g, h) and 23.29 mg/(g, h), respectively; the mass fraction of poly-13-hydroxybutyrate (PHB) increased to 62.87 mg/g under anaerobic conditions; the mass fraction of polyphosphate was 92.67 mg/g under anoxic conditions; and the effluent concentration of total phosphorus (TP) was 1.47 mg/L. With the increase of pH, the mass fraction of acetic acid and PHB also increased, and the absorption rate of acetic acid was equal to the disintegration rate of polyphosphate. When the pH value was above 8.0, biological phosphorus removal was achieved by chemical phosphorus precipitation, and the phosphorus removal rate decreased.
基金Supported by National Key Project of Science and Technology of Water Pollution Control and Management(2009ZX07212-001-04)
文摘[ Objective] The study aimed to discuss the feasibility and optimal conditions of removing ammonia nitrogen by using microwave coupled with active carbon. [ Method ] In the study, a novel process, microwave radiation coupled with active carbon, was applied to remove ammonia nitro- gen from wastewater, and the influences of solution pH, air conditions, active carbon usage, microwave power and time on the removal effect of ammonia nitrogen were studied. [ Result] Microwave coupled with active carbon can remove ammonia nitrogen efficiently, and pumping air into the wastewater can also increase the removal rate of ammonia nitrogen to a certain extent. Higher pH, intensive microwave power and longer treating time could also increase the removal rate of ammonia nitrogen using microwave radiation coupled with active carbon, whereas the usage of active carbon contributed a small impact. It was proved that microwave coupled with active carbon was an effective method for the removal of ammonia ni- trogen from wastewater. Meanwhile, the orthogonal experiment results showed that the removal rate of ammonia nitrogen reached 92.5% under the optimal conditions, that is, the usage of active carbon was 0.5 g, pH = 11, microwave radiation power was 850 W, and microwave action time was 4 minutes. [ Conclusion] The research provided a new method to remove ammonia nitrogen from wastewater, namely microwave coupled with ac- tive carbon.
文摘Two-year field experiments were conducted at Linqing, Yellow River valley of China, to study the plant response to the removal of early fruiting branches in transgenic Bt (Bacillus thuringiensis) cotton (Gossypium hirsutum L.) from 2003 to 2004. Plants were undamaged and treated by removing two basal fruiting branches (FB) at squaring to form the control and the removal treatment, respectively. The plant height, leaf area (LA), dry weight of fruiting forms (DWFF), the number of fruiting nodes (NFN), photosynthetic (Pn) rate, and levels of leaf chlorophyll (Chl), N, P, K, and Cry lAc protein in main- stem leaves were measured at a 10- or 20-d interval after FB removal, and the sink/source ratio as indicated by NFN/LA and DWFF/LA was determined. FB removal significantly increased the plant height, LA, and plant biomass in both years. Lint yields were increased 7.5 and 5.2% by removal compared with their controls in 2003 and 2004, respectively. Significant increases in boll size (5.7 and 5.1%) were also observed in removal than in control for both years. Either NFN/LA or DWFF/LA was significantly reduced by removal before 40 d after removal; however, both NFN/LA and DWFF/LA were significantly enhanced by FB removal at 80 d after removal compared to the untreated control. There was no significant difference in fiber quality in the first two harvests between removal and control, but fiber strength and micronarie in the third harvest were significantly improved by FB removal. In terms of leaf Chl, Pn rate, levels of total N, P, and K in late season, leaf senescence was considerably delayed by FB removal. Levels of CrylAc protein in the fully expanded young leaves were considerably higher in FB-excised plants than in control, indicating FB removal enhanced CrylAc expression. It is suggested that the yield and quality improvement with FB removal may be attributed to the increased NFN/LA or DWFF/LA in late season and delayed leaf senescence, respectively. FB removal can be a potential practice incorporated into the intensive cultivation system for enhancing transgenic Bt cotton production.
文摘When biochar made from waste pallet was added to treated livestock wastewater, the total nitrogen and ammonium ion concentrations decreased, with removal rates over 10 days of about 60% and 30%, respectively. Bacteria were isolated with high ammonium removal ability and they were identified based on their 16S rRNA gene sequences. Anaerobic denitrifying <i>Cronobacter</i> spp. was isolated from the biochar used for water purification. When each strain was cultured in a liquid medium containing ammonium sulfate (initial ammonium concentration 30 mg/L), the highest ammonium removal rates were 83.8% - 96.5%. Organic acids were more effective than carbohydrates as sole carbon sources for nitrogen removal from wastewater. The absorbance at 660 nm increased with nitrogen removal, indicating that cells proliferated, so it was presumed that ammonium was taken up by assimilation.
基金financially supported by the Open Research Fund of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,Wuhan University of Science and Technology(No.FMRU201405)the National Natural Science Foundation of China(Nos.51471122 and 51604202)the China Postdoctoral Science Foundation(No.2016M592397)
基金This work was supported by"863"Program of China (2004AA601020),The Project of Beijing Science and technology Committee(H020620010120) and the project of Beijing city key laboratory
文摘In this paper three controllers for A/O process are developed, including a DO cascade controller, an external carbon flow rate controller and an internal recycling flow rate controller. The objective of the different controllers is to control the nitrate and ammonia concentration. Simulation study demonstrated that these controllers could efficiently control nitrogen removal and meet stricter effluent quality standards at a minimum cost.
基金supported by the National Natural Science Foundation of China(Nos.U1908225,U1702253)Fundamental Research Funds for the Central Universities of China(Nos.N182515007,N170908001,N2025004)。
文摘In order to achieve high-efficiency alkali conversion and impurity removal of high titanium slag under the condition of low alkali concentration,a new way of oxygen-rich alkali conversion in KOH solution was proposed.The conversion law of element occurrence state and the influence of the conversion conditions on the titanium conversion rate and removal rate of silicon and aluminum were studied.The results showed that the KOH solution converted the titanium oxide in high titanium slag into whisker-like potassium titanate.Silicon and aluminum elements were dissolved into the solution.Under the following conditions,KOH concentration of 6 mol/L,conversion temperature of 260℃,initial oxygen partial pressure of 2 MPa,liquid−solid ratio of 35 mL/g,conversion time of 4 h,and high titanium slag particle size of 48−74μm,the conversion rate of titanium was 97.0%,and the removal rates of silicon and aluminum were 90.2%and 76.2%,respectively.Oxygen-rich alkali conversion product was converted to rutile with a TiO_(2) grade of 99.1%by acid hydrolysis conversion.
基金Project(2012BAE06B01)supported by the National High Technology Research and Development Program of China
文摘The recovery of indium from waste indium tin oxide (ITO) target has great significance for the economy and environment.Based on our previous study on the optimization of acid leaching technique,the present study focuses on tin removal via zinc substitution and indium recovery from a tin-free leach solution.The results show that when the amount of added zinc powder and reaction time increase,the tin removal effect can be improved.The optimal conditions obtained are as follows:additional content of zinc powder from 20 g/L to 25 g/L,reaction temperature of 60 ℃,and reaction time from 3 h to 4 h.Under this condition,the tin removal rate exceeds 98%,and the tin content in the tin removal solution is lower than 0.05 g/L.After tin removal,the substitution time could be reduced from 3-5 d to 1-2 d by neutralizing the residual acid by using alkaline residue and maintaining the pH value less than 2.The indium recovery rate is also improved when this condition is used.The indium content in the tin residue is reduced to lower than 0.1% and the acid-insoluble β-SnO2 could be obtained via the strong nitric acid leaching of the indium-containing tin residue.Indium could be recovered from ITO with a high purity of 99.995% via electrorefining.