期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Selective removal technology using chemical etching and excimer assistance in precision recycle of color filter 被引量:1
1
作者 Pai-shan PA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期210-214,共5页
Color filters are produced using semiconductor production techniques although problems with low yield remain to be addressed. This study presents a new means of selective removal using excimer irradiation, chemical et... Color filters are produced using semiconductor production techniques although problems with low yield remain to be addressed. This study presents a new means of selective removal using excimer irradiation, chemical etching, or electrochemical machining on the fifth generation TFT LCDs. The selective removal of microstructure layers from the color filter surface of an optoelectronic flat panel display, as well as complete removal of the ITO thin-films, RGB layer, or resin black matrix (BM) layer from the substrate is possible. Individual defective film layers can be removed, or all films down to the Cr layer or bare glass can be completely eliminated. Experimental results demonstrate that defective ITO thin-films, RGB layers, or the resin BM layer can now be recycled with a great precision. When the ITO or RGB layer proves difficult to remove, excimer light can be used to help with removal. During this recycling process, the use of 225 nm excimer irradiation before chemical etching, or electrochemical machining, makes removal of stubborn film residues easy, effectively improving the quality of recycled color filters and reducing fabrication cost. 展开更多
关键词 chemical etching excimer light selective removal technology display color filter
下载PDF
Research on compound plugging removal technology and its application in Xinmu oilfield of Jilin
2
作者 WANG Xianfeng MO Xiuwen 《Global Geology》 2012年第3期252-256,共5页
Most fault-block reservoirs in Xinmu oilfield belong to heterogeneous sandstone in characters which has low permeability, and reservoir pollution is a common phenomenon in this area. Acidizing deplugging in oil wells ... Most fault-block reservoirs in Xinmu oilfield belong to heterogeneous sandstone in characters which has low permeability, and reservoir pollution is a common phenomenon in this area. Acidizing deplugging in oil wells has become one of the major measures to improve production efficiency in the field. A compound deplug- ging technology in high efficiency low corrosion is developed for this kind of low permeability sandstone reser- voir. On the basis of profoundly understanding of the reservoir's physical properties and sensitivity, along with comprehensive analysis of the cause for jams in oil wells, a series of experiments are carried out in order to in- vestigate the dissolution reaction among samples and deplugging inhibitor, sample dissolving speed, formation fluid compatibility, reduction of secondary pollution, etc. Considered reservoir condition in nearby wells the op- timized compositional deplugging liquid formula is selected for this reservoir. It is featured by reducing the de- plugging reaction speed, extending solution for processing radius, preventing secondary damage in dissolution processing, and removing plug pollution effectively. To implement this high efficiency low corrosion deplugging measure based on reservoir condition in the borehole and nearby wells, a relatively better result of deplugging and production increasing is achieved, which enriches the measures to increase production in Xinmu oilfield, and this method can be applied to other similar oiffields for the purpose of maintaining the crude oil production and providing assistant for increasing the production significantly. 展开更多
关键词 compound plugging removal technology performance evaluation field application Xinmu oilfield
下载PDF
A review of removal technology for antimony in aqueous solution 被引量:24
3
作者 Xiaojing Long Xin Wang +1 位作者 Xuejun Guo Mengchang He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第4期189-204,共16页
Antimony(Sb)and its compounds,toxic metalloid,have been classified as high-priority pollutants.Increasing Sb released into the water environment by natural processes and anthropogenic activities,which exposure threate... Antimony(Sb)and its compounds,toxic metalloid,have been classified as high-priority pollutants.Increasing Sb released into the water environment by natural processes and anthropogenic activities,which exposure threatens to human health and ecosystems.Therefore,it is of unquestionable importance to remove Sb from polluted water.Keeping in view the extreme importance of this issue,we summarize the source,chemistry,speciation,distribution,toxicity,and polluted situation of Sb about aqueous solution.Then,we provide the recent and common technology to remove Sb,which are based on adsorption,coagulation/flocculation,electrochemical technology,membrane technology,ion exchange,etc.In this review,we focus in detail on the adsorption method,researchers at present have been investigating to discover more advanced,cost-effective,eco-friendly,reusable adsorbents.However,to date the Sb-containing wastewater treatment technologies are not sufficiently developed and most of research have been tested only in controlled lab conditions.Few reports are available that include field studies and applications.We critically analyzed the salient features and removal mechanisms,evaluating benefits and limitations of these technologies,hoping to provide more references for further research.Finally,we considered the Fe-or Mn-based technologies was the most promising technique to remove Sb for field application. 展开更多
关键词 Antimony pollution removal technology ADSORPTION COAGULATION-FLOCCULATION Membrane technology Ion exchange
原文传递
Diffusion and adoption of environmentally sound technology in China cement industry 被引量:1
4
作者 Cai Ning Economics Department, Zhejiang University, Hangzhou 310027, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1997年第3期68-75,共8页
From rapid growth of cement industry in China there is serious pollution of powdered dust. After general analysis on factors influencing adoption of environmentally sound technology(EST) as well as economic benefit ... From rapid growth of cement industry in China there is serious pollution of powdered dust. After general analysis on factors influencing adoption of environmentally sound technology(EST) as well as economic benefit from adoption of dust removing technology and capital ability of cement firms to invest, the conclusion that the obstacles to EST in China cement sector are different from ones in other sectors was drawn. And then, hindrances to diffusion and adoption of EST in China cement were discussion by empirical study. 展开更多
关键词 dust removing technology DIFFUSION hindrance cement industry.
下载PDF
Mechanism of micro-wetting of highly hydrophobic coal dust in underground mining and new wetting agent development 被引量:5
5
作者 Mingzhong Gao Hongmei Li +5 位作者 Yun Zhao Yiting Liu Weiqi Zhou Luming Li Jing Xie Jie Deng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期31-46,共16页
The internal mechanism of the high hydrophobicity of the coal samples from the Pingdingshan mining area was studied through industrial,element,and surface functional group analysis.Laboratory testing and molecular dyn... The internal mechanism of the high hydrophobicity of the coal samples from the Pingdingshan mining area was studied through industrial,element,and surface functional group analysis.Laboratory testing and molecular dynamics simulations were employed to study the impact of three types of surfactants on the surface adsorption properties and wettability of highly hydrophobic bituminous coal.The results show that the surface of highly hydrophobic bituminous coal is compact,rich in inorganic minerals,and poorly wettable and that coal molecules are dominated by hydrophobic functional groups of aromatic rings and aliphatic structures.The wetting performance of surfactants as the intermediate carrier to connect coal and water molecules is largely determined by the interaction force between surfactants and coal(Fs-c)and the interaction force between surfactants and water(Fs-w),which effectively improve the wettability of modified coal dust via modifying its surface electrical properties and surface energy.A new type of wetting agent with a dust removal rate of 89%has been developed through discovery of a compound wetting agent solution with optimal wetting and settling performance.This paper provides theoretical and technical support for removing highly hydrophobic bituminous coal dust in underground mining. 展开更多
关键词 Dust removal technology Bituminous coal dust New dust suppressant Mine safety Molecular dynamics
下载PDF
The Application of Cold Banding Technology for Dust Removed From BOF Gas Using Dry Dedusting Technology
6
作者 Tang Weijun Zhang Yong Ma Gangping 《Meteorological and Environmental Research》 CAS 2015年第1期14-16,共3页
Firstly, physical and chemical properties of dust removed from BOF gas are analyzed, and then the cold banding technology of dust removed from BOF gas and its application are introduced. Tests have proved that using c... Firstly, physical and chemical properties of dust removed from BOF gas are analyzed, and then the cold banding technology of dust removed from BOF gas and its application are introduced. Tests have proved that using cooled agglomerated pellets made of the dust removed from BOF gas and small amounts of modified starch as a coolant and slagging agent in steel production can bring about considerable economic, social and environmental benefits. 展开更多
关键词 BOF gas Dust removed from BOF gas using dry dedusting technology Cold banding Steelmaking China
下载PDF
Demonstration of groundwater contaminants removing technology at the Hougao area of Zibo city
7
《Global Geology》 1998年第1期35-36,共2页
关键词 area Demonstration of groundwater contaminants removing technology at the Hougao area of Zibo city
下载PDF
Adsorption and membrane separation for removal and recovery of volatile organic compounds 被引量:7
8
作者 Guoqiang Gan Shiying Fan +2 位作者 Xinyong Li Zhongshen Zhang Zhengping Hao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第1期96-115,共20页
Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emis... Volatile organic compounds(VOCs)are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity,high volatility,and poor degradability.It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations.In China,clear directions and requirements for reduction of VOCs have been given in the“national plan on environmental improvement for the 13th Five-Year Plan period”.Therefore,the development of efficient technologies for removal and recovery of VOCs is of great significance.Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions.Among them,adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects.This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs.Firstly,adsorption and membrane separation were found to be the research hotspots through bibliometric analysis.Then,a comprehensive understanding of their mechanisms,factors,and current application statuses was discussed.Finally,the challenges and perspectives in this emerging field were briefly highlighted. 展开更多
关键词 Volatile organic compounds(VOCs) removal and recovery technology ADSORPTION Membrane separation Bibliometric analysis
原文传递
Application status and comparison of dioxin removal technologies for iron ore sintering process 被引量:2
9
作者 Hong-ming Long Qi Shi +3 位作者 Hong-liang Zhang Ru-fei Wei Tie-jun Chun Jia-xin Li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第4期357-365,共9页
The emission of dioxins from the iron ore sintering process is the largest emission source of dioxins, and the reduction in dioxin emission from the iron ore sintering process to the environment is increasingly import... The emission of dioxins from the iron ore sintering process is the largest emission source of dioxins, and the reduction in dioxin emission from the iron ore sintering process to the environment is increasingly important. Three approaches to control the emission of dioxins were reviewed: source control, process control, and terminal control. Among them, two terminal control technologies, activated carbon adsorption and selective reduction technology, were discussed in detail. Following a comparison of the reduction technologies, the terminal control method was indicated as the key technology to achieve good control of dioxins during the sintering process. For the technical characteristics of the sintering process and flue gas, multiple methods should be collectively considered, and the most suitable method may be addition of inhibitors + ultra-clean dust collection (electrostatic precipitation/bag filter) + desulphurization + selective catalytic reduction to sufficiently remove multiple pollutants, which provides a direction for the cooperative disposal of flue gas pollutants in future. 展开更多
关键词 Iron ore sintering process DIOXINS removal technology Activated carbon adsorption Selective catalyticreduction
原文传递
Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification
10
作者 Ming Zeng Ping Li +2 位作者 Nan Wu Xiaofang Li Chang Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第6期139-147,共9页
A novel microorganism embedding material was prepared to enhance the biological nitrogen removal through simultaneous nitrification and denitrification. Polyvinyl alcohol (PVA), sodium alginate (SA) and cyclodextr... A novel microorganism embedding material was prepared to enhance the biological nitrogen removal through simultaneous nitrification and denitrification. Polyvinyl alcohol (PVA), sodium alginate (SA) and cyclodextrin (CD) were used to compose gel bead with embedded activated sludge. The effects of temperature, CD addition and concentrations of PYA and SA on nitrogen removal were evaluated. Results show that the gel bead with CD addition at 30℃contributed to the highest nitrogen removal efficiency and nitrogen removal rate of 85.4% and 2.08 mg·(L·h)^-1, respectively. Meanwhile, negligible NO3^- and NO2^- were observed, proving the occurrence of simultaneous nitrification and denitrification. The High-Throughput Sequencing confirms that the microbial community mainly contained Comamonadaceae in the proportion of 61.3%. Overall, CD increased gel bead's porosity and resulted in the high specific endogenous respiration rate and high nitrogen removal efficiency, which is a favorable additional agent to the traditional embedding material. 展开更多
关键词 Immobilization technology Nitrogen removal Cyclodextrin Microbial community Wastewater treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部