Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of...Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of CaO-SiO2 slag for boron removal was characterized by establishing the thermodynamic relationship between the distribution coefficient of boron (LB) and the activities of SiO2 and CaO. The experimental results show that the distribution coefficient and the removal efficiency of boron are greatly improved with the increase of CaO proportion in the slag. The maximal value of LB reaches 1.57 with a slag composition of 60%CaO-40%SiO2 (mass fraction). The boron content in the refined silicon is reduced from 18×10^-6 to 1.8×10^-6 using slag refining at 1600 ℃ for 3 h with a CaO-SiO2/MG-Si ratio of 2.5, and the removal efficiency of boron reaches 90%.展开更多
The removal of boron from metallurgical silicon in slag system of CaO-SiO2-10%CaF2 was investigated. The partition coefficient of boron (LB) between slag and silicon phase was studied under different conditions of s...The removal of boron from metallurgical silicon in slag system of CaO-SiO2-10%CaF2 was investigated. The partition coefficient of boron (LB) between slag and silicon phase was studied under different conditions of slag basicity (CaO/SiO2 ratio), temperature, mass ratio of slag to silicon and gas blowing. The results show that LB has a maximum value of 4.61 when the CaO/SiO2 mass ratio is around 2 at l 873 K. The logarithm of LB is linear to the reciprocal of temperatures in the range of 1 773-1 973 K. LB increases with the increase of mass ratio of slag to silicon, but it does not increase markedly when the ratio excesses 3. Gas blowing can sionificantlv increase the removal of boron, and LR increases with the increase of water vapor content.展开更多
A new method about purification of metallurgical grade silicon (MG-Si) by a combination of Si-Al solvent refining andgas blowing treatment was proposed. The morphologies and transformation of impurity phases, especi...A new method about purification of metallurgical grade silicon (MG-Si) by a combination of Si-Al solvent refining andgas blowing treatment was proposed. The morphologies and transformation of impurity phases, especially for boron and iron in Si-Al melt were investigated during Ar-H2 gas blowing treatment. The mechanism of boron removal was discussed. The resultsindicate that gas blowing can refine grain size and increase nucleation of the primary Si. Boron can be effectively removed fromMG-Si using the Ar-H2 gas blowing technique during the Si-Al solvent refining. Compared with the sample without gas blowing,the removal efficiency of boron increases from 45.83% to 74.73% after 2.5 h gas blowing. The main impurity phases containingboron are in the form of TiB2, AlB2 and VB compounds and iron-containing one is in the form of β-Al5FeSi intermetallic compound.Part of boron combines [H] to transform into gas BxHy (BH, BH2) and diffuses towards the surface of the melt and is volatilized byAr-H2 gas blowing treatment under electromagnetic stirring.展开更多
Brine,which is used to produce high-purity magnesia,was purified by XSC-700 to remove boron.Boron adsorption capacity of XSC-700 was investigated by varying the initial boron concentration,temperature,resin/brine rati...Brine,which is used to produce high-purity magnesia,was purified by XSC-700 to remove boron.Boron adsorption capacity of XSC-700 was investigated by varying the initial boron concentration,temperature,resin/brine ratio and stirring speed,while keeping the diameter at constant.The results show that boron adsorption capacity increases with increasing boron concentration,temperature,and decreases with increasing resin/brine ratio.And the stirring speed could slightly affect the boron adsorption capacity.The adsorption kinetics obeys the pseudo-second-order model.Equilibrium data were both examined by Freundlich and Langmuir isotherm equations and it can be well represented by the Freundlich isotherm equation.展开更多
Affinity membranes are fabricated for boric acid removal by the surface functionalization of microporous polypropylene membrane(MPPM)with lactose-based polyols.The affinity is based on specific complexation between bo...Affinity membranes are fabricated for boric acid removal by the surface functionalization of microporous polypropylene membrane(MPPM)with lactose-based polyols.The affinity is based on specific complexation between boric acid and saccharide polyols.A photoinduced grafting-chemical reaction sequence was used to prepare these affinity membranes.Poly(2-aminoethyl methacrylate hydrochloride)[poly(AEMA)]was grafted on the surfaces of MPPM by UV-induced graft polymerization.Grafting in the membrane pores was visualized by dying the cross-section of poly(AEMA)-grafted MPPM with fluorescein disodium and imaging with confocal laser scanning microscopy.It is concluded that lactose ligands can be covalently immobilized on the external surface and in the pores by the subsequent coupling of poly(AEMA)with lactobionic acid(LA).Physical and chemical properties of the affinity membranes were characterized by field emission scanning electron microscopy and Fourier Transform Infrared/Attenuated Total Refraction spectroscopy(FT-IR/ATR).3-Aminophenyl boric acid(3-APBA)was removed from aqueous solution by a single piece of lactose-functionalized MPPM in a dynamic filtration system.The results show that the 3-APBA removal reaches an optimal efficiency(39.5%)under the alkaline condition(pH9.1),which can be improved by increasing the immobilization density of LA.Regeneration of these affinity membranes can be easily realized through acid-base washing because the complexation of boric acid and saccharide polyol is reversible.展开更多
The distribution coefficient (LB) of boron between CaO?SiO2?BaO?CaF2 slag and silicon was investigated usingelectromagnetic induction melting for the purpose of improving the boron removal fraction. The dependence of ...The distribution coefficient (LB) of boron between CaO?SiO2?BaO?CaF2 slag and silicon was investigated usingelectromagnetic induction melting for the purpose of improving the boron removal fraction. The dependence of the borondistribution coefficient between slag and silicon on the fundamental parameters of CaO to SiO2 mass ratio and refining time and theadditions of BaO and CaF2 to the slag was discussed. The results show that LB can be increased by adding BaO and CaF2 toCaO?SiO2 slag. The maximum value of LB (6.94) is obtained when the CaO to SiO2 mass ratio is 1.1:1 and the contents of BaO andCaF2 are fixed at 15% and 20%, respectively. Increasing the refining time increases the LB. After the slag treatment is performedtwice, the boron content of the silicon is successfully reduced from 3.5×10?5 to 3.7×10?6, and the removal fraction of boron reaches89.4%.展开更多
Using a new type of solar furnace and a specially designed induction furnace, cost effective and highly efficient purification of metallurgical silicon into solar grade silicon can be achieved. It is realized by a new...Using a new type of solar furnace and a specially designed induction furnace, cost effective and highly efficient purification of metallurgical silicon into solar grade silicon can be achieved. It is realized by a new method for extracting boron from silicon with the aid of photo-chemical effect. In this article, we discussed the postulated principle of strong radiation catalysis and the recent development in practice. Starting from ordinary metallurgical silicon, we achieved a purification result of 0.12 ppmw to 0.3 ppmw of boron impurity in silicon by only single pass of a low cost and simple process, the major obstacle to make 'cheap' solar grade silicon feedstock in industry is thus removed.展开更多
Boron removal from metallurgical-grade silicon(MG-Si) using CaO–SiO2 slag was studied by employing a medium-frequency electromagnetic induction furnace.The relationship between the optical basicity(K)of the CaO–SiO2...Boron removal from metallurgical-grade silicon(MG-Si) using CaO–SiO2 slag was studied by employing a medium-frequency electromagnetic induction furnace.The relationship between the optical basicity(K)of the CaO–SiO2 slag and the distribution coefficient of boron(LB) was investigated.Consequently, the local minimum and maximum LBvalues of 0.72 and 1.58 are obtained when K = 0.56 and K = 0.71, respectively.The boron content in MG-Si decreases gradually with refinement time increasing, down to a minimum value of4.73 9 10-6.The controlling step in the removal of boron from MG-Si is not the chemical reaction at the interface of the slag and silicon.Instead, the controlling step is a diffusion mass transfer, in which boron impurities diffuse from molten silicon to the interface of the slag and silicon,or B2O3 formed by the chemical reaction diffuses from the slag–silicon interface to molten slag.展开更多
In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural netwo...In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural network was used to model the relationship between slag compositions and boron content in SiO2-CaO-Na3 AlF6-CaSiO3 slag system.The BP neural network predicted error is below 2.38%.The prediction results show that the slag composition has a significant influence on boron removal.Increasing the basicity of slag by adding CaO or Na3 AlF6 to CaSiO3-based slag could contribute to the boron removal,and the addition of Na3 AlF6 has a better removal effect in comparison with the addition of CaO.The oxidizing characteristic of CaSiO3 results in the ineffective removal with the addition of SiO2.The increase of oxygen potential(pO2)in the CaO-Na3 AlF6-CaSiO3 slag system by varying the SiO2 proportion can also contribute to the boron removal in silicon ingot.The best slag composition to remove boron was predicted by BP neural network using genetic algorithm(GA).The predicted results show that the mass fraction of boron in silicon reduces from 14.0000×10-6 to0.4366×10-6 after slag melting using 23.12%SiO2-10.44%CaO-16.83%Na3 AlF6-49.61%CaSiO3 slag system,close to the experimental boron content in silicon which is below 0.5×10-6.展开更多
Slag refining,as an important option for boron removal to produce solar grade silicon(SOG-Si) from metallurgical grade silicon(MG-Si),has attracted increasing attention.In this paper,Na_2CO_3-SiO_2 systems were ch...Slag refining,as an important option for boron removal to produce solar grade silicon(SOG-Si) from metallurgical grade silicon(MG-Si),has attracted increasing attention.In this paper,Na_2CO_3-SiO_2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al_2O_3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al_2O_3 can help retention of the basicity of the slags,hence improving the boron removal rate.展开更多
Agriculture is the largest consumer of freshwater.Desalinated seawater is an important alternative water source for sustainable irrigation.However,some issues of the current desalination technology hinder its use for ...Agriculture is the largest consumer of freshwater.Desalinated seawater is an important alternative water source for sustainable irrigation.However,some issues of the current desalination technology hinder its use for agriculture irrigation,including low boron removal and high energy consumption.This study systematically explored the feasibility of employing fertilizer drawn forward osmosis(FDFO)as an alternative to 2nd pass reverse osmosis(RO)by considering the boron removal performance and specific energy consumption(SEC).Different operating conditions were investigated,such as the boron and NaCl concentrations in feed solution(FS),draw solution(DS)concentration,pH,the volume ratio of FS to DS,membrane orientation,flow rate,and operating temperature.The results indicated that a low boron concentration in FS and high DS pH(pH=11.0)decreased the boron solute flux,and led to low final boron concentration in the DS.The other operating conditions had negligible influence on the final DS boron concentration.Also,a lower flow rate and higher specific water flux with certain permeate water volumes were conducive to reducing the SEC of the FDFO process.Overall,our study paves a new way of using FDFO in irrigation,which avoids the phytotoxicity and human health risk of boron.The results show the potential of FDFO as an alternative to 2nd pass RO for irrigation water production.展开更多
基金Projects (51104080,u1137601) supported by the National Natural Science Foundation of ChinaProject (14118557) supported by the Personnel Training Foundation of Kunming University of Science and Technology in China
文摘Boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag was studied. The results show that it is impossible basically to remove boron using a pure SiO2 refining. The oxidizing ability of CaO-SiO2 slag for boron removal was characterized by establishing the thermodynamic relationship between the distribution coefficient of boron (LB) and the activities of SiO2 and CaO. The experimental results show that the distribution coefficient and the removal efficiency of boron are greatly improved with the increase of CaO proportion in the slag. The maximal value of LB reaches 1.57 with a slag composition of 60%CaO-40%SiO2 (mass fraction). The boron content in the refined silicon is reduced from 18×10^-6 to 1.8×10^-6 using slag refining at 1600 ℃ for 3 h with a CaO-SiO2/MG-Si ratio of 2.5, and the removal efficiency of boron reaches 90%.
基金Project(2007J0012)supported by the Natural Science Foundation of Fujian Province,ChinaProject(2007HZ0005-2)supported by the Key Technological Program of Fujian Province,China
文摘The removal of boron from metallurgical silicon in slag system of CaO-SiO2-10%CaF2 was investigated. The partition coefficient of boron (LB) between slag and silicon phase was studied under different conditions of slag basicity (CaO/SiO2 ratio), temperature, mass ratio of slag to silicon and gas blowing. The results show that LB has a maximum value of 4.61 when the CaO/SiO2 mass ratio is around 2 at l 873 K. The logarithm of LB is linear to the reciprocal of temperatures in the range of 1 773-1 973 K. LB increases with the increase of mass ratio of slag to silicon, but it does not increase markedly when the ratio excesses 3. Gas blowing can sionificantlv increase the removal of boron, and LR increases with the increase of water vapor content.
基金Projects(51404231,51474201)supported by the National Natural Science Foundation of ChinaProject(1508085QE81)supported by Anhui Provincial Natural Science Foundation,China+1 种基金Project(2014M561846)supported by China Postdoctoral Science FoundationProject(2012065)supported by 100 Talent Program of Chinese Academy of Sciences
文摘A new method about purification of metallurgical grade silicon (MG-Si) by a combination of Si-Al solvent refining andgas blowing treatment was proposed. The morphologies and transformation of impurity phases, especially for boron and iron in Si-Al melt were investigated during Ar-H2 gas blowing treatment. The mechanism of boron removal was discussed. The resultsindicate that gas blowing can refine grain size and increase nucleation of the primary Si. Boron can be effectively removed fromMG-Si using the Ar-H2 gas blowing technique during the Si-Al solvent refining. Compared with the sample without gas blowing,the removal efficiency of boron increases from 45.83% to 74.73% after 2.5 h gas blowing. The main impurity phases containingboron are in the form of TiB2, AlB2 and VB compounds and iron-containing one is in the form of β-Al5FeSi intermetallic compound.Part of boron combines [H] to transform into gas BxHy (BH, BH2) and diffuses towards the surface of the melt and is volatilized byAr-H2 gas blowing treatment under electromagnetic stirring.
基金Project(2008BAB35B04) supported by the National Key Technology R&D Program of China
文摘Brine,which is used to produce high-purity magnesia,was purified by XSC-700 to remove boron.Boron adsorption capacity of XSC-700 was investigated by varying the initial boron concentration,temperature,resin/brine ratio and stirring speed,while keeping the diameter at constant.The results show that boron adsorption capacity increases with increasing boron concentration,temperature,and decreases with increasing resin/brine ratio.And the stirring speed could slightly affect the boron adsorption capacity.The adsorption kinetics obeys the pseudo-second-order model.Equilibrium data were both examined by Freundlich and Langmuir isotherm equations and it can be well represented by the Freundlich isotherm equation.
基金Supported by the National Natural Science Foundation of China(50933006)the National Basic Research Program of China(2009CB623401)
文摘Affinity membranes are fabricated for boric acid removal by the surface functionalization of microporous polypropylene membrane(MPPM)with lactose-based polyols.The affinity is based on specific complexation between boric acid and saccharide polyols.A photoinduced grafting-chemical reaction sequence was used to prepare these affinity membranes.Poly(2-aminoethyl methacrylate hydrochloride)[poly(AEMA)]was grafted on the surfaces of MPPM by UV-induced graft polymerization.Grafting in the membrane pores was visualized by dying the cross-section of poly(AEMA)-grafted MPPM with fluorescein disodium and imaging with confocal laser scanning microscopy.It is concluded that lactose ligands can be covalently immobilized on the external surface and in the pores by the subsequent coupling of poly(AEMA)with lactobionic acid(LA).Physical and chemical properties of the affinity membranes were characterized by field emission scanning electron microscopy and Fourier Transform Infrared/Attenuated Total Refraction spectroscopy(FT-IR/ATR).3-Aminophenyl boric acid(3-APBA)was removed from aqueous solution by a single piece of lactose-functionalized MPPM in a dynamic filtration system.The results show that the 3-APBA removal reaches an optimal efficiency(39.5%)under the alkaline condition(pH9.1),which can be improved by increasing the immobilization density of LA.Regeneration of these affinity membranes can be easily realized through acid-base washing because the complexation of boric acid and saccharide polyol is reversible.
基金Projects(51501028,51471042,51375070)supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds of the Central Universities,China
文摘The distribution coefficient (LB) of boron between CaO?SiO2?BaO?CaF2 slag and silicon was investigated usingelectromagnetic induction melting for the purpose of improving the boron removal fraction. The dependence of the borondistribution coefficient between slag and silicon on the fundamental parameters of CaO to SiO2 mass ratio and refining time and theadditions of BaO and CaF2 to the slag was discussed. The results show that LB can be increased by adding BaO and CaF2 toCaO?SiO2 slag. The maximum value of LB (6.94) is obtained when the CaO to SiO2 mass ratio is 1.1:1 and the contents of BaO andCaF2 are fixed at 15% and 20%, respectively. Increasing the refining time increases the LB. After the slag treatment is performedtwice, the boron content of the silicon is successfully reduced from 3.5×10?5 to 3.7×10?6, and the removal fraction of boron reaches89.4%.
文摘Using a new type of solar furnace and a specially designed induction furnace, cost effective and highly efficient purification of metallurgical silicon into solar grade silicon can be achieved. It is realized by a new method for extracting boron from silicon with the aid of photo-chemical effect. In this article, we discussed the postulated principle of strong radiation catalysis and the recent development in practice. Starting from ordinary metallurgical silicon, we achieved a purification result of 0.12 ppmw to 0.3 ppmw of boron impurity in silicon by only single pass of a low cost and simple process, the major obstacle to make 'cheap' solar grade silicon feedstock in industry is thus removed.
基金financially supported by the National Natural Science Foundation of China (Nos. 51461027 and 51104080)
文摘Boron removal from metallurgical-grade silicon(MG-Si) using CaO–SiO2 slag was studied by employing a medium-frequency electromagnetic induction furnace.The relationship between the optical basicity(K)of the CaO–SiO2 slag and the distribution coefficient of boron(LB) was investigated.Consequently, the local minimum and maximum LBvalues of 0.72 and 1.58 are obtained when K = 0.56 and K = 0.71, respectively.The boron content in MG-Si decreases gradually with refinement time increasing, down to a minimum value of4.73 9 10-6.The controlling step in the removal of boron from MG-Si is not the chemical reaction at the interface of the slag and silicon.Instead, the controlling step is a diffusion mass transfer, in which boron impurities diffuse from molten silicon to the interface of the slag and silicon,or B2O3 formed by the chemical reaction diffuses from the slag–silicon interface to molten slag.
基金financially supported by the National High Technology Research and Development Program of China (No.2012AA062302)。
文摘In order to investigate the boron removal effect in slag refining process,intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3 AlF6-CaSiO3 slag system at 1,550℃,and back propagation(BP)neural network was used to model the relationship between slag compositions and boron content in SiO2-CaO-Na3 AlF6-CaSiO3 slag system.The BP neural network predicted error is below 2.38%.The prediction results show that the slag composition has a significant influence on boron removal.Increasing the basicity of slag by adding CaO or Na3 AlF6 to CaSiO3-based slag could contribute to the boron removal,and the addition of Na3 AlF6 has a better removal effect in comparison with the addition of CaO.The oxidizing characteristic of CaSiO3 results in the ineffective removal with the addition of SiO2.The increase of oxygen potential(pO2)in the CaO-Na3 AlF6-CaSiO3 slag system by varying the SiO2 proportion can also contribute to the boron removal in silicon ingot.The best slag composition to remove boron was predicted by BP neural network using genetic algorithm(GA).The predicted results show that the mass fraction of boron in silicon reduces from 14.0000×10-6 to0.4366×10-6 after slag melting using 23.12%SiO2-10.44%CaO-16.83%Na3 AlF6-49.61%CaSiO3 slag system,close to the experimental boron content in silicon which is below 0.5×10-6.
文摘Slag refining,as an important option for boron removal to produce solar grade silicon(SOG-Si) from metallurgical grade silicon(MG-Si),has attracted increasing attention.In this paper,Na_2CO_3-SiO_2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al_2O_3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al_2O_3 can help retention of the basicity of the slags,hence improving the boron removal rate.
基金supported by the National Key Research and Development Program of China(No.2018YFC040800202)the National Natural Science Foundation of China(Grant No.21878177)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2019LFG003)the grants from the Tai Shan Scholar Foundation(No.ts201511003)。
文摘Agriculture is the largest consumer of freshwater.Desalinated seawater is an important alternative water source for sustainable irrigation.However,some issues of the current desalination technology hinder its use for agriculture irrigation,including low boron removal and high energy consumption.This study systematically explored the feasibility of employing fertilizer drawn forward osmosis(FDFO)as an alternative to 2nd pass reverse osmosis(RO)by considering the boron removal performance and specific energy consumption(SEC).Different operating conditions were investigated,such as the boron and NaCl concentrations in feed solution(FS),draw solution(DS)concentration,pH,the volume ratio of FS to DS,membrane orientation,flow rate,and operating temperature.The results indicated that a low boron concentration in FS and high DS pH(pH=11.0)decreased the boron solute flux,and led to low final boron concentration in the DS.The other operating conditions had negligible influence on the final DS boron concentration.Also,a lower flow rate and higher specific water flux with certain permeate water volumes were conducive to reducing the SEC of the FDFO process.Overall,our study paves a new way of using FDFO in irrigation,which avoids the phytotoxicity and human health risk of boron.The results show the potential of FDFO as an alternative to 2nd pass RO for irrigation water production.