Based on the monitoring data of PM_(2.5) concentration in Bengbu Environmental Monitoring Station and precipitation observation data of Bengbu National Meteorological Observation Station from 2016 to 2019, the influen...Based on the monitoring data of PM_(2.5) concentration in Bengbu Environmental Monitoring Station and precipitation observation data of Bengbu National Meteorological Observation Station from 2016 to 2019, the influence of precipitation on PM_(2.5) mass concentration in Bengbu City was analyzed. The results show that precipitation had a washing and removal effect on PM_(2.5) in the air, and the removal effect was related to precipitation level, precipitation intensity, precipitation duration and PM_(2.5) concentration. The removal effect of precipitation on PM_(2.5) increased with the increase of precipitation level, and the seasonal difference was obvious. Precipitation intensity was positively correlated with the removal effect of PM_(2.5) , but the average removal rate began to decline when precipitation intensity exceeded 10 mm. With the increase of precipitation intensity, the proportion of positive removal showed an overall upward trend, but there was a low-value area as precipitation intensity was 3-10 mm. Precipitation duration was also positively correlated with the removal effect of PM_(2.5) , and there was a low-value area when precipitation duration was 10-15 h. When PM_(2.5) concentration was low before the precipitation process began, the removal effect was not good, and the average removal rate was negative. As PM_(2.5) concentration was high before the precipitation process started, the removal effect was obvious.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
To master theoretical calculation for dust removal efficiency of high pressure atomization in an underground coal mine, the corresponding atomization characteristics and dust removal efficiency were both comprehensive...To master theoretical calculation for dust removal efficiency of high pressure atomization in an underground coal mine, the corresponding atomization characteristics and dust removal efficiency were both comprehensively studied in theory by virtue of related theories of hydromechanics and aerosol.According to actual measurements of flow coefficients and atomization angles of X-type swirl nozzle,computational formula was derived for atomized particle sizes of such a nozzle in conjunction with relevant empirical equation. Moreover, a mathematical model for applying high pressure atomization to dust removal in underground coal mine was also established to deduce theoretical computation formula of fractional efficiency. Then, Matlab was adopted to portray the relation curve between fractional efficiency and influence factors. In addition, a theoretical formula was also set up for removal efficiency of respirable dust and total coal dust based on dust size and frequency distribution equations. In the end,impacts of dust characteristic parameters on various dust removal efficiencies were analyzed.展开更多
In this paper, an experimental study on SO2 removal by nanosecond rising edge pulse dielectric barrier discharge (DBD) plasma, generated by multi-needle-to-plane electrodes, is carried out. The mechanism of the effe...In this paper, an experimental study on SO2 removal by nanosecond rising edge pulse dielectric barrier discharge (DBD) plasma, generated by multi-needle-to-plane electrodes, is carried out. The mechanism of the effect of various factors, such as gap size between dielectric barrier and discharge needles, environmental humidity, and inlet speed of gas flow upon the removal efficiency of air purification is analyzed. The studies show that SOs removal efficiency improves with the increase in the gap size between dielectric barrier and discharge needles in the case of a fixed space between two electrodes, and also improves with the increase in the environmental humidity. For a mixed gas with a fixed concentration, there is an optimal inlet speed of gas flow, which leads to the best removal efficiency.展开更多
The non-thermal plasma created by high voltage pulsed power supply can be used to remove sulfur dioxide in the air, but how to increase the removing efficiency is not clear. It is novel to apply the magnetic field in ...The non-thermal plasma created by high voltage pulsed power supply can be used to remove sulfur dioxide in the air, but how to increase the removing efficiency is not clear. It is novel to apply the magnetic field in removing SO2 as discussed in this paper. The mechanisms of removing sulfur dioxide by non-thermal plasma along with the application of the magnetic field are analyzed, and the related factors affecting the removal efficiency, such as the magnitude of pulsed voltage, the polarity of the pulse, the layout of the discharge electrode, especially the magnetic field are experimentally investigated. It can be concluded that the purification efficiency is improved significantly by applying the magnetic field.展开更多
Ammonia in wastewater is a major pollutant produced in industrial and agricultural wastewaters. Ammonia is often removed by conventional technologies such as pack tower aeration, biological treatment or adsorption as ...Ammonia in wastewater is a major pollutant produced in industrial and agricultural wastewaters. Ammonia is often removed by conventional technologies such as pack tower aeration, biological treatment or adsorption as ammonium ion onto zeolites. In many cases, conventional methods are very costly and inefficient, and therefore there is a need for an alternative separation technique for more efficient removal of ammonia from wastewaters. The aim of this study is to investigate the performance of combination of ozonation and absorption through membrane processes to remove ammonia from wastewater using NHSW (natural hot spring water) as absorbent. Experimental results show that hollow fiber membrane contactor has potential application for ammonia removal from wastewater. Operating variables such as time and pH of absorbent solution are found to remarkably influence the removal process efficiency.. Based on experimental results ozonation can improve ammonia removal efficiency through hollow fiber membrane contactor. Ammonia removal efficiencies and overall mass transfer coefficients increase with decreasing pH of absorbent solution.展开更多
Based onmultiphase flowtheory and capillary mechanics,the dimensionless bond number expression of the influence of string grille wire spacing on droplet spreading is derived.Taking a liquid film formed by spreading dr...Based onmultiphase flowtheory and capillary mechanics,the dimensionless bond number expression of the influence of string grille wire spacing on droplet spreading is derived.Taking a liquid film formed by spreading droplets based on Kelvin correlation,the Young-Laplace equation,and the Hagen-Poiseuille law,an equation for calculating the thickness and height of the liquid film is established with temperature,relative humidity and molar volume of liquid phase as independent variables.According to the theory of string grille filtration and dust removal,a dust removal efficiency calculation model covering the wet string grille wire group is constructed based on the liquid film thickness,height,wire diameter,water film area,and vortex shedding frequency.Finally,a theoretical analysis of the influence of water film area on the efficiency of wet string grille dust removal is carried out based on the spray pressure and the ratio of string grille wire distance to wire diameter.It is found that the effect of spray pressure on water film area and dust removal efficiency is more significant than the string grille wire distance diameter ratio.Moreover,the optimized combination of wet string grille wire distance diameter ratio 0.84,wind speed 3m/s and spray pressure 0.8 MPa is found,which could provide an important reference for engineering applications.展开更多
Electromagnetic separation of non-metallic inclusions from Al-Si melt is studied by theoretical analysis and experiments on self-designed electromagnetic separation apparatus. Metallographs and LECO Image Analysis Sy...Electromagnetic separation of non-metallic inclusions from Al-Si melt is studied by theoretical analysis and experiments on self-designed electromagnetic separation apparatus. Metallographs and LECO Image Analysis System were used to analyze the content of alumina in aluminum alloy before and after electromagnetic separation. It is seen that removal effciency increases with the increase of electromagnetic force (EMF) and diameter of inclusion particles while decreases with the increase of melt velocity and height of separator. All alumina particles with diamete of 14μm have been removed successfully from the melt.展开更多
To evaluate the removal efficiency of organic pollutants in the sewage by Harbin municipal sewage treatment plant, the influent and effluent samples from the plant were pretreated by liquid-liquid extraction (LLE) u...To evaluate the removal efficiency of organic pollutants in the sewage by Harbin municipal sewage treatment plant, the influent and effluent samples from the plant were pretreated by liquid-liquid extraction (LLE) under conditions of acidity, neutrality and alkaleseence in sequence, and then were analyzed by gas chromatograph-mass spectrum (GC-MS) procedures. Results indicate that there are 70 species of organic pollutants in the influent sample of the plant, which mainly consist of alkyls, benzene series, esters, and heteroeyclic compounds. Some of these organic pollutants are biotoxie and belong to persistent organic pollutants (POPs). Four species among them are on the list of Prior Pollutants of Environmental Protection Agency of USA (USEPA). However, 7 species of organic pollutants appearing in the effluent sample mainly include alkyls of multi-carbons and phthalate esters. The removal efficiency of phthalates is poor because of their poor biodegradability. The sewage treatment technique is effective in removing most+of organics pollutants.展开更多
As the main equipment of flue gas dedusting in coal fired boiler,electrostatic precipitator(ESP)can meet the requirements of emission standard for air pollutants from coal-fired power plants through improving the effi...As the main equipment of flue gas dedusting in coal fired boiler,electrostatic precipitator(ESP)can meet the requirements of emission standard for air pollutants from coal-fired power plants through improving the efficiency of ESP and combining with desulfurization system while not installing wet ESP(WESP).This paper introduces the modifications of ESP cathode structure to improve the efficiency of dust collection by reducing the secondary dust loss at cathode.The application of cathode dust collection provides a reference for the improvement of ESP dust collection efficiency.展开更多
The knowledge of the existence,distribution and fate of polycyclic aromatic hydrocarbons(PAHs)and substituted polycyclic aromatic hydrocarbons(SPAHs)in wastewater treatment plants(WWTPs)was vital for reducing their co...The knowledge of the existence,distribution and fate of polycyclic aromatic hydrocarbons(PAHs)and substituted polycyclic aromatic hydrocarbons(SPAHs)in wastewater treatment plants(WWTPs)was vital for reducing their concentrations entering the aquatic environment.The concentrations of 13 SPAHs and 16 PAHs were all determined in a WWTP with styrene butadiene rubber(SBR)in partnership with the moving bed biofilm reactor(MBBR)process.SPAHs presented a higher concentration lever than PAHs in nearly all samples.The total removal efficiencies of PAHs and SPAHs ranged from 64.0%to 71.36%and 78.4%to 79.7%,respectively.The total yearly loads of PAHs(43.0 kg)and SPAHs(73.0 kg)were mainly reduced by the primary and SBR/MBBR biological treatment stages.The tertiary treatment stage had a minor contribution to target compounds removal.According to a synthesis and improvement fate model,we found that the dominant processes changed as the chemical octanol water partition coefficient(K_(ow))increased.But the seasonal variations of experimental removal efficiencies were more obvious than that of predicted data.In the primary sedimentation tank,dissolution in the aqueous phase and sorption to sludge/particulate matter were controlling processes for the removal of PAHs and SPAHs.The sorption to sludge and biodegradation were the principal removal mechanisms during the SBR/MBBR biological treatment process.The contribution of volatilization to removal was always insignificant.Furthermore,the basic physicochemical properties and operating parameters influenced the fate of PAHs and SPAHs in the WWTP.展开更多
The cyclone dust collector is an important subsystem of straw crushers used in agriculture.In the present study,a new type of dust collector with involute morphology is proposed to obtain better dust removal efficienc...The cyclone dust collector is an important subsystem of straw crushers used in agriculture.In the present study,a new type of dust collector with involute morphology is proposed to obtain better dust removal efficiency with respect to that of classical tangential and spiral dust collectors.A discrete phase model(DPM)method is used in synergy with a turbulence model,and the SIMPLE algorithm to simulate the flow field inside the dust collector and the related particle dynamics.It is shown that the internal flow field features a primary swirl,a secondary swirl and blockage effects.Moreover,for the involute dust collector,the tangential velocity in the initial stage and the pressure in the high-pressure area are larger than those obtained for the classical types.The dust removal efficiency is 37.11%,25.3%,and 16.37%for the involute type dust collector,the tangential type and the spiral type,respectively.展开更多
Mining activities have led to a generation of large quantities of heavy metals laden wastes which are released into the environment in an unsustainable way causing the contamination of the ecosystems and posing a risk...Mining activities have led to a generation of large quantities of heavy metals laden wastes which are released into the environment in an unsustainable way causing the contamination of the ecosystems and posing a risk to human health. Most mining companies have not employed any rehabilitation or remediation program of the heavy metal laden waste. The aim of this study was to assess the potential of sunflower for phytoremediation of heavy metal polluted mine tailings. Phytoremediation is an emerging technology in the remediation of mine tailings that uses tolerant plant species to clean up contaminated sites. It uses plants with high biomass and sunflower has been identified as such. These plants can extract, transfer, sequester and stabilize a variety of metals through mechanisms such as phytoextraction, phytostabilization, phytoaccumulation and phytovolatilization. Pot experiments were conducted by growing sunflower (Helianthus annuus L.) in pyrite mine tailings and in agricultural soil as a control. The study showed that the concentration of Cu reduced from 40.76 mg/kg to 36.59 mg/kg, Zn reduced from 3.58 mg/kg to 3.49 mg/kg and Fe reduced from 23.70 mg/kg to 10 mg/kg respectively in the mine tailings after 6 weeks. Analysis of harvested sunflower (roots, stems, leaves) showed that sunflower could remove heavy metals from the tailings and the highest removal efficiency was 53.7% and the highest translocation factor was 0.25. It was concluded that sunflower has the potential to remediate contaminated mine tailings and that phytoremediation is a viable and efficient technology to treat soils contaminated with heavy metals.展开更多
This research paper presented the potential of Corchuros olitorius L.as a natural coagulant in the removal of turbidity,total suspended solids,and biochemical oxygen demand from the domestic wastewater of the Universi...This research paper presented the potential of Corchuros olitorius L.as a natural coagulant in the removal of turbidity,total suspended solids,and biochemical oxygen demand from the domestic wastewater of the University of Science and Technology of Southern Philippines.Optimization of the natural coagulant and synthetic coagulant was employed prior to the treatment design.The jar test method was used in the optimization and lab analysis including the gravimetric method,dilution technique,and digital measurements.The optimization results of Corchuros olitorius L.using the jar test method revealed better removal at a lower dosage of 50 mg/L and a higher settling time of 90 minutes.The characterization using FTIR analysis also suggests a functional group that influences coagulation activity.Using the optimum dose and optimum settling time,results with the different treatment designs showed the highest removal at pH 7 showed%BOD removal of 89.78%(A75C25);85.98%(A25C75);88.76%(A50C50).TSS removal measured values of 88.50%(A75C25),85.56%(A25C75),and 87.16%(A50C50),while turbidity removal of 83.47%(A75C25),80.27%(A25C75),and 80.27%(A50C50).Statistically,measured values differ between treatment designs.It is suggested to investigate removal efficiency in more varied pH conditions,different settling times,stirring speed,and other variables for future studies.展开更多
Gas blowing is a valid method to remove the impurities from metallurgical grade silicon(MG-Si) melt.The thermodynamic behavior of impurities Fe,Al,Ca,Ti,Cu,C,B and P in MG-Si was studied in the process of O2 blowing...Gas blowing is a valid method to remove the impurities from metallurgical grade silicon(MG-Si) melt.The thermodynamic behavior of impurities Fe,Al,Ca,Ti,Cu,C,B and P in MG-Si was studied in the process of O2 blowing.The removal efficiencies of impurities in MG-Si were investigated using O2 blowing in ladle.It is found that the removal efficiencies are higher than 90% for Ca and Al and nearly 50% for B and Ti.The morphology of inclusions was analyzed and the phases Al3Ni,NiSi2 and Al3Ni were confirmed in MG-Si by X-ray diffraction.It was found that SiB4 exists in Si?B binary system.The chemical composition of inclusions in MG-Si before and after refining was analyzed by SEM-EDS.It is found that the amount of white inclusion reduces for the removal of most Al and Ca in the forms of molten slag inclusion and the contents of Fe,Ni and Mn in inclusion increase for their inertia in silicon melt with O2 blowing.展开更多
[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental t...[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental temperature, stopping time of aeration, aeration time and aeration rate by 9 groups of experiments, so as to improve the water removal efficiency of adopted mixed and reduce operation energy consumption. [Result] The average water contents in the mixed bedding under 3 temperatures decreased by 4.58% ±2.91%, 13.17% ±3.77% and 10.8% ±7.72%, respectively; the highest water removal efficiency could be achieved under an experimental temperature at 45 ℃, stopping time of aeration of 15 min, aeration time of 7 min, and an aeration rate at 4 m^3/min, which formed the optimal factor combination mode of the operation parameter of the water control equipment; the effects of various experimental factors on water content in the bedding were in order of aeration ratetemperatureaeration timestopping time of aeration; and the effects of various experimental factors on water removal efficiency in the bedding were in order of temperatureaeration rateaeration timestopping time of aeration. [Conclusion] After the optimization of operation parameters of the water control equipment for the deep-litter bedding, water removal efficiency of the mixed bedding could be improved, and the operation energy consumption of the equipment could be reduced.展开更多
For wastewater treatment in rural areas, a novel three-stage step-feed wastewater treatment system, combined with a drop-aeration biofilm process, was tested in the laboratory to investigate its performance in removin...For wastewater treatment in rural areas, a novel three-stage step-feed wastewater treatment system, combined with a drop-aeration biofilm process, was tested in the laboratory to investigate its performance in removing suspended solids (SS), chemical oxygen demand (COD), NH4+-N, total nitrogen (TN), and total phosphorus (TP). The removal rates of SS, COD and NH4+-N were 90%, 80%, and 90% in efluent concentrations less than 10 mg/L, 50 mg/L and 8 mg/L, respectively. The TP removal rate was less satisfactory. The C/N ratio in the raw wastewater was often less than 3.5, and the removal efficiency of TN was therefore limited. A carbon-release batch experiment was carried out to measure the feasibility of enhancing denitrification at low influent C/N ratios. The result showed that the C/N could be over 9.0 in the supernatant. Polymerase chain reaction denaturing gradient gel electrophoresis technology was used to reveal the changes in the bacterial community during different stages of the integrated step-feed biofilm process. The results showed that banding patterns and the distribution of dominant bands for the same experimental period in different aerobic zones were similar. Phylogenetic analysis indicated that lanes 10, 11 and 12, which presented three aerobic zones at the same operation period, had the closest phylogenetic relationship among the lanes.展开更多
The two representative polycyclic musks, 1-(5,6,7,8-tetrahydro-3,5,5,6,8,8-hexamethyl-2-naphthenyl)-ethanone (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyrane (HHCB), were measur...The two representative polycyclic musks, 1-(5,6,7,8-tetrahydro-3,5,5,6,8,8-hexamethyl-2-naphthenyl)-ethanone (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyrane (HHCB), were measured in aqueous samples and sludge samples of three sewage treatment plants (STPs) in Beijing, China using a gas chromatograph-mass spectrometry. The HHCB and AHTN concentration ranges in the influents were 1251.4-3003.8 ng/L and 111.9-286.3 ng/L, respectively. Meanwhile, the ranges of 492.8-1285.3 ng/L for HHCB and 47.3-89.3 ng/L for AHTN were present in the effluents. The musks in the sludges were three to four orders of magnitude higher than those in aqueous sewages. The removal efficiencies.of the two musks varied in the ranges of 41.7%- 70.1% for HHCB, and 25.5%-68.8% for AHTN. Adsorption onto suspended particulate matter played an important role in removing musks from the sewages. The HHCB/AHTN ratio along the treatment processes showed that the two musks had high similarity of removal from sewage by each reactor in STP. The musks in the effluent sewages may pose a low potential risk to aquatic environment in terms of the predicted-non-effect concentration. Nevertheless, considering the possible additive and synergistic effects with other compounds emitted via STPs, their bioconcentration and bioaccumulation in aquatic organisms and so on, it is essential to monitor these compounds in various compartments and to study their environmental fate.展开更多
The purification of metallurgical-grade silicon (MG-Si) has been investigated during electron beam melting (EBM) process. The results show that the phosphorus, calcium and aluminum contents decrease significantly ...The purification of metallurgical-grade silicon (MG-Si) has been investigated during electron beam melting (EBM) process. The results show that the phosphorus, calcium and aluminum contents decrease significantly after melting, and magnesium is partially removed. However, no significant change in content for boron and iron has been found. Langmuir's equation and Henry law were used to derive the removal effi-ciency for each impurity element. The free surface temperature was estimated by the Hertz-Knudsen-Langmuir equation and silicon's vapor pressure equation. Good agreement was found between measured and calculated impurities' removal efficiency for phosphorus, calcium and aluminum, magnesium, boron and iron. The deviation between the two results was also analyzed in depth.展开更多
In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon s...In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon source in the underpart of the SWIS on nitrogen removal at different influents (with the total nitrogen (TN) concentration 40 and 80 mg L^-1, respectively) were investigated by soil column simulating experiments. When the relatively light pollution influent with 40 mg L^-1 TN was used, the average concentrations of NO3-N and TN in effluents were (4.69±0.235), (6.18±0.079) mg L^-1, respectively, decreased by 32 and 30.8% than the control; the NO3--N concentration of all effluents was below the maximum contaminant level of 10 mg L^-1; as high as 92.67% of the TN removal efficiency was achieved. When relatively heavy pollution influent with 80 mg LITN was used, the average concentrations of NO3--N and TN in effluents were (10.2±0.265), (12.5±0.148) mg L^-1 respectively, decreased by 20 and 21.2% than the control; the NO3--N concentration of all effluents met the grade Ⅲ of the national quality standard for ground water of China (GB/T 14848-1993) with the values less than 20 mg L^-1; the TN removal efficiency of 94.1% was achieved. In summary, adding peat in the underpart of the SWIS significantly decreased TN and NO3- -N concentration in effluents and the nitrogen removal efficiency improved significantly.展开更多
文摘Based on the monitoring data of PM_(2.5) concentration in Bengbu Environmental Monitoring Station and precipitation observation data of Bengbu National Meteorological Observation Station from 2016 to 2019, the influence of precipitation on PM_(2.5) mass concentration in Bengbu City was analyzed. The results show that precipitation had a washing and removal effect on PM_(2.5) in the air, and the removal effect was related to precipitation level, precipitation intensity, precipitation duration and PM_(2.5) concentration. The removal effect of precipitation on PM_(2.5) increased with the increase of precipitation level, and the seasonal difference was obvious. Precipitation intensity was positively correlated with the removal effect of PM_(2.5) , but the average removal rate began to decline when precipitation intensity exceeded 10 mm. With the increase of precipitation intensity, the proportion of positive removal showed an overall upward trend, but there was a low-value area as precipitation intensity was 3-10 mm. Precipitation duration was also positively correlated with the removal effect of PM_(2.5) , and there was a low-value area when precipitation duration was 10-15 h. When PM_(2.5) concentration was low before the precipitation process began, the removal effect was not good, and the average removal rate was negative. As PM_(2.5) concentration was high before the precipitation process started, the removal effect was obvious.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
基金Financial provided by the National Natural Science Foundation of China (Nos. 51574123 and U1361118)the China Postdoctoral Science Foundation (No. 2015M 582118)
文摘To master theoretical calculation for dust removal efficiency of high pressure atomization in an underground coal mine, the corresponding atomization characteristics and dust removal efficiency were both comprehensively studied in theory by virtue of related theories of hydromechanics and aerosol.According to actual measurements of flow coefficients and atomization angles of X-type swirl nozzle,computational formula was derived for atomized particle sizes of such a nozzle in conjunction with relevant empirical equation. Moreover, a mathematical model for applying high pressure atomization to dust removal in underground coal mine was also established to deduce theoretical computation formula of fractional efficiency. Then, Matlab was adopted to portray the relation curve between fractional efficiency and influence factors. In addition, a theoretical formula was also set up for removal efficiency of respirable dust and total coal dust based on dust size and frequency distribution equations. In the end,impacts of dust characteristic parameters on various dust removal efficiencies were analyzed.
基金the National Science Foundation for Distinguished Young Scholars of China (No.50525722)the Science and Technology research key project of MOE
文摘In this paper, an experimental study on SO2 removal by nanosecond rising edge pulse dielectric barrier discharge (DBD) plasma, generated by multi-needle-to-plane electrodes, is carried out. The mechanism of the effect of various factors, such as gap size between dielectric barrier and discharge needles, environmental humidity, and inlet speed of gas flow upon the removal efficiency of air purification is analyzed. The studies show that SOs removal efficiency improves with the increase in the gap size between dielectric barrier and discharge needles in the case of a fixed space between two electrodes, and also improves with the increase in the environmental humidity. For a mixed gas with a fixed concentration, there is an optimal inlet speed of gas flow, which leads to the best removal efficiency.
基金The project supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher EducationInstitutions under the MOE, China (No. 123-2002)
文摘The non-thermal plasma created by high voltage pulsed power supply can be used to remove sulfur dioxide in the air, but how to increase the removing efficiency is not clear. It is novel to apply the magnetic field in removing SO2 as discussed in this paper. The mechanisms of removing sulfur dioxide by non-thermal plasma along with the application of the magnetic field are analyzed, and the related factors affecting the removal efficiency, such as the magnitude of pulsed voltage, the polarity of the pulse, the layout of the discharge electrode, especially the magnetic field are experimentally investigated. It can be concluded that the purification efficiency is improved significantly by applying the magnetic field.
文摘Ammonia in wastewater is a major pollutant produced in industrial and agricultural wastewaters. Ammonia is often removed by conventional technologies such as pack tower aeration, biological treatment or adsorption as ammonium ion onto zeolites. In many cases, conventional methods are very costly and inefficient, and therefore there is a need for an alternative separation technique for more efficient removal of ammonia from wastewaters. The aim of this study is to investigate the performance of combination of ozonation and absorption through membrane processes to remove ammonia from wastewater using NHSW (natural hot spring water) as absorbent. Experimental results show that hollow fiber membrane contactor has potential application for ammonia removal from wastewater. Operating variables such as time and pH of absorbent solution are found to remarkably influence the removal process efficiency.. Based on experimental results ozonation can improve ammonia removal efficiency through hollow fiber membrane contactor. Ammonia removal efficiencies and overall mass transfer coefficients increase with decreasing pH of absorbent solution.
基金We thank Esther Posner,PhD,from Edanz Group China(www.liwenbianji.cn/ac)for English language editing on an earlier draft of this manuscript.This work was supported by the 2017 Hunan Provincial Graduate Research Innovation Project of China(No.CX2017B649)the National Natural Science Foundation of China(No.51774134)+2 种基金the Excellent Youth Project of Hunan Provincial Department of Education(No.19B223)the Hunan Provincial Natural Science Foundation of China(No.2019JJ60044)the Hunan Provincial Natural Science Foundation of China(No.2018JJ64028).
文摘Based onmultiphase flowtheory and capillary mechanics,the dimensionless bond number expression of the influence of string grille wire spacing on droplet spreading is derived.Taking a liquid film formed by spreading droplets based on Kelvin correlation,the Young-Laplace equation,and the Hagen-Poiseuille law,an equation for calculating the thickness and height of the liquid film is established with temperature,relative humidity and molar volume of liquid phase as independent variables.According to the theory of string grille filtration and dust removal,a dust removal efficiency calculation model covering the wet string grille wire group is constructed based on the liquid film thickness,height,wire diameter,water film area,and vortex shedding frequency.Finally,a theoretical analysis of the influence of water film area on the efficiency of wet string grille dust removal is carried out based on the spray pressure and the ratio of string grille wire distance to wire diameter.It is found that the effect of spray pressure on water film area and dust removal efficiency is more significant than the string grille wire distance diameter ratio.Moreover,the optimized combination of wet string grille wire distance diameter ratio 0.84,wind speed 3m/s and spray pressure 0.8 MPa is found,which could provide an important reference for engineering applications.
基金This work supported by the National Natural Science Foundation of China(Grant,No.59871029)the National Key Fundamental Research Project(973)(No.G1999064900)
文摘Electromagnetic separation of non-metallic inclusions from Al-Si melt is studied by theoretical analysis and experiments on self-designed electromagnetic separation apparatus. Metallographs and LECO Image Analysis System were used to analyze the content of alumina in aluminum alloy before and after electromagnetic separation. It is seen that removal effciency increases with the increase of electromagnetic force (EMF) and diameter of inclusion particles while decreases with the increase of melt velocity and height of separator. All alumina particles with diamete of 14μm have been removed successfully from the melt.
文摘To evaluate the removal efficiency of organic pollutants in the sewage by Harbin municipal sewage treatment plant, the influent and effluent samples from the plant were pretreated by liquid-liquid extraction (LLE) under conditions of acidity, neutrality and alkaleseence in sequence, and then were analyzed by gas chromatograph-mass spectrum (GC-MS) procedures. Results indicate that there are 70 species of organic pollutants in the influent sample of the plant, which mainly consist of alkyls, benzene series, esters, and heteroeyclic compounds. Some of these organic pollutants are biotoxie and belong to persistent organic pollutants (POPs). Four species among them are on the list of Prior Pollutants of Environmental Protection Agency of USA (USEPA). However, 7 species of organic pollutants appearing in the effluent sample mainly include alkyls of multi-carbons and phthalate esters. The removal efficiency of phthalates is poor because of their poor biodegradability. The sewage treatment technique is effective in removing most+of organics pollutants.
文摘As the main equipment of flue gas dedusting in coal fired boiler,electrostatic precipitator(ESP)can meet the requirements of emission standard for air pollutants from coal-fired power plants through improving the efficiency of ESP and combining with desulfurization system while not installing wet ESP(WESP).This paper introduces the modifications of ESP cathode structure to improve the efficiency of dust collection by reducing the secondary dust loss at cathode.The application of cathode dust collection provides a reference for the improvement of ESP dust collection efficiency.
基金This work was supported by the National Natural Science Foundation of China(No.51979255).
文摘The knowledge of the existence,distribution and fate of polycyclic aromatic hydrocarbons(PAHs)and substituted polycyclic aromatic hydrocarbons(SPAHs)in wastewater treatment plants(WWTPs)was vital for reducing their concentrations entering the aquatic environment.The concentrations of 13 SPAHs and 16 PAHs were all determined in a WWTP with styrene butadiene rubber(SBR)in partnership with the moving bed biofilm reactor(MBBR)process.SPAHs presented a higher concentration lever than PAHs in nearly all samples.The total removal efficiencies of PAHs and SPAHs ranged from 64.0%to 71.36%and 78.4%to 79.7%,respectively.The total yearly loads of PAHs(43.0 kg)and SPAHs(73.0 kg)were mainly reduced by the primary and SBR/MBBR biological treatment stages.The tertiary treatment stage had a minor contribution to target compounds removal.According to a synthesis and improvement fate model,we found that the dominant processes changed as the chemical octanol water partition coefficient(K_(ow))increased.But the seasonal variations of experimental removal efficiencies were more obvious than that of predicted data.In the primary sedimentation tank,dissolution in the aqueous phase and sorption to sludge/particulate matter were controlling processes for the removal of PAHs and SPAHs.The sorption to sludge and biodegradation were the principal removal mechanisms during the SBR/MBBR biological treatment process.The contribution of volatilization to removal was always insignificant.Furthermore,the basic physicochemical properties and operating parameters influenced the fate of PAHs and SPAHs in the WWTP.
基金supported by the Independent Research Fund of the State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(No.SKLMRDPC20ZZ06)and the Program in the Youth Elite Support Plan in Universities of Anhui Province(No.gxyq2020013).
文摘The cyclone dust collector is an important subsystem of straw crushers used in agriculture.In the present study,a new type of dust collector with involute morphology is proposed to obtain better dust removal efficiency with respect to that of classical tangential and spiral dust collectors.A discrete phase model(DPM)method is used in synergy with a turbulence model,and the SIMPLE algorithm to simulate the flow field inside the dust collector and the related particle dynamics.It is shown that the internal flow field features a primary swirl,a secondary swirl and blockage effects.Moreover,for the involute dust collector,the tangential velocity in the initial stage and the pressure in the high-pressure area are larger than those obtained for the classical types.The dust removal efficiency is 37.11%,25.3%,and 16.37%for the involute type dust collector,the tangential type and the spiral type,respectively.
文摘Mining activities have led to a generation of large quantities of heavy metals laden wastes which are released into the environment in an unsustainable way causing the contamination of the ecosystems and posing a risk to human health. Most mining companies have not employed any rehabilitation or remediation program of the heavy metal laden waste. The aim of this study was to assess the potential of sunflower for phytoremediation of heavy metal polluted mine tailings. Phytoremediation is an emerging technology in the remediation of mine tailings that uses tolerant plant species to clean up contaminated sites. It uses plants with high biomass and sunflower has been identified as such. These plants can extract, transfer, sequester and stabilize a variety of metals through mechanisms such as phytoextraction, phytostabilization, phytoaccumulation and phytovolatilization. Pot experiments were conducted by growing sunflower (Helianthus annuus L.) in pyrite mine tailings and in agricultural soil as a control. The study showed that the concentration of Cu reduced from 40.76 mg/kg to 36.59 mg/kg, Zn reduced from 3.58 mg/kg to 3.49 mg/kg and Fe reduced from 23.70 mg/kg to 10 mg/kg respectively in the mine tailings after 6 weeks. Analysis of harvested sunflower (roots, stems, leaves) showed that sunflower could remove heavy metals from the tailings and the highest removal efficiency was 53.7% and the highest translocation factor was 0.25. It was concluded that sunflower has the potential to remediate contaminated mine tailings and that phytoremediation is a viable and efficient technology to treat soils contaminated with heavy metals.
文摘This research paper presented the potential of Corchuros olitorius L.as a natural coagulant in the removal of turbidity,total suspended solids,and biochemical oxygen demand from the domestic wastewater of the University of Science and Technology of Southern Philippines.Optimization of the natural coagulant and synthetic coagulant was employed prior to the treatment design.The jar test method was used in the optimization and lab analysis including the gravimetric method,dilution technique,and digital measurements.The optimization results of Corchuros olitorius L.using the jar test method revealed better removal at a lower dosage of 50 mg/L and a higher settling time of 90 minutes.The characterization using FTIR analysis also suggests a functional group that influences coagulation activity.Using the optimum dose and optimum settling time,results with the different treatment designs showed the highest removal at pH 7 showed%BOD removal of 89.78%(A75C25);85.98%(A25C75);88.76%(A50C50).TSS removal measured values of 88.50%(A75C25),85.56%(A25C75),and 87.16%(A50C50),while turbidity removal of 83.47%(A75C25),80.27%(A25C75),and 80.27%(A50C50).Statistically,measured values differ between treatment designs.It is suggested to investigate removal efficiency in more varied pH conditions,different settling times,stirring speed,and other variables for future studies.
基金Projects(51104080,u1137601) supported by the National Natural Science Foundation of ChinaProject(2009CD027) supported by the Natural Science Foundation of Yunnan Province,ChinaProject(14118557) supported by the Personnel Training Foundation of Kunming University of Science and Technology,China
文摘Gas blowing is a valid method to remove the impurities from metallurgical grade silicon(MG-Si) melt.The thermodynamic behavior of impurities Fe,Al,Ca,Ti,Cu,C,B and P in MG-Si was studied in the process of O2 blowing.The removal efficiencies of impurities in MG-Si were investigated using O2 blowing in ladle.It is found that the removal efficiencies are higher than 90% for Ca and Al and nearly 50% for B and Ti.The morphology of inclusions was analyzed and the phases Al3Ni,NiSi2 and Al3Ni were confirmed in MG-Si by X-ray diffraction.It was found that SiB4 exists in Si?B binary system.The chemical composition of inclusions in MG-Si before and after refining was analyzed by SEM-EDS.It is found that the amount of white inclusion reduces for the removal of most Al and Ca in the forms of molten slag inclusion and the contents of Fe,Ni and Mn in inclusion increase for their inertia in silicon melt with O2 blowing.
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(13)3073)Jiangsu Science and Technology Support Program(BE2014-342-1)~~
文摘[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental temperature, stopping time of aeration, aeration time and aeration rate by 9 groups of experiments, so as to improve the water removal efficiency of adopted mixed and reduce operation energy consumption. [Result] The average water contents in the mixed bedding under 3 temperatures decreased by 4.58% ±2.91%, 13.17% ±3.77% and 10.8% ±7.72%, respectively; the highest water removal efficiency could be achieved under an experimental temperature at 45 ℃, stopping time of aeration of 15 min, aeration time of 7 min, and an aeration rate at 4 m^3/min, which formed the optimal factor combination mode of the operation parameter of the water control equipment; the effects of various experimental factors on water content in the bedding were in order of aeration ratetemperatureaeration timestopping time of aeration; and the effects of various experimental factors on water removal efficiency in the bedding were in order of temperatureaeration rateaeration timestopping time of aeration. [Conclusion] After the optimization of operation parameters of the water control equipment for the deep-litter bedding, water removal efficiency of the mixed bedding could be improved, and the operation energy consumption of the equipment could be reduced.
基金supported by Chinese Academy of Sciences (No. kzcx1-yw-06-20)the special fund from the State Key Laboratory of Environmental Aquatic Chemistry(No. 09Y06ESPCR)
文摘For wastewater treatment in rural areas, a novel three-stage step-feed wastewater treatment system, combined with a drop-aeration biofilm process, was tested in the laboratory to investigate its performance in removing suspended solids (SS), chemical oxygen demand (COD), NH4+-N, total nitrogen (TN), and total phosphorus (TP). The removal rates of SS, COD and NH4+-N were 90%, 80%, and 90% in efluent concentrations less than 10 mg/L, 50 mg/L and 8 mg/L, respectively. The TP removal rate was less satisfactory. The C/N ratio in the raw wastewater was often less than 3.5, and the removal efficiency of TN was therefore limited. A carbon-release batch experiment was carried out to measure the feasibility of enhancing denitrification at low influent C/N ratios. The result showed that the C/N could be over 9.0 in the supernatant. Polymerase chain reaction denaturing gradient gel electrophoresis technology was used to reveal the changes in the bacterial community during different stages of the integrated step-feed biofilm process. The results showed that banding patterns and the distribution of dominant bands for the same experimental period in different aerobic zones were similar. Phylogenetic analysis indicated that lanes 10, 11 and 12, which presented three aerobic zones at the same operation period, had the closest phylogenetic relationship among the lanes.
基金supported by the Major InternationalJoint Research Program of NSFC (No. 20721140019).
文摘The two representative polycyclic musks, 1-(5,6,7,8-tetrahydro-3,5,5,6,8,8-hexamethyl-2-naphthenyl)-ethanone (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyrane (HHCB), were measured in aqueous samples and sludge samples of three sewage treatment plants (STPs) in Beijing, China using a gas chromatograph-mass spectrometry. The HHCB and AHTN concentration ranges in the influents were 1251.4-3003.8 ng/L and 111.9-286.3 ng/L, respectively. Meanwhile, the ranges of 492.8-1285.3 ng/L for HHCB and 47.3-89.3 ng/L for AHTN were present in the effluents. The musks in the sludges were three to four orders of magnitude higher than those in aqueous sewages. The removal efficiencies.of the two musks varied in the ranges of 41.7%- 70.1% for HHCB, and 25.5%-68.8% for AHTN. Adsorption onto suspended particulate matter played an important role in removing musks from the sewages. The HHCB/AHTN ratio along the treatment processes showed that the two musks had high similarity of removal from sewage by each reactor in STP. The musks in the effluent sewages may pose a low potential risk to aquatic environment in terms of the predicted-non-effect concentration. Nevertheless, considering the possible additive and synergistic effects with other compounds emitted via STPs, their bioconcentration and bioaccumulation in aquatic organisms and so on, it is essential to monitor these compounds in various compartments and to study their environmental fate.
文摘The purification of metallurgical-grade silicon (MG-Si) has been investigated during electron beam melting (EBM) process. The results show that the phosphorus, calcium and aluminum contents decrease significantly after melting, and magnesium is partially removed. However, no significant change in content for boron and iron has been found. Langmuir's equation and Henry law were used to derive the removal effi-ciency for each impurity element. The free surface temperature was estimated by the Hertz-Knudsen-Langmuir equation and silicon's vapor pressure equation. Good agreement was found between measured and calculated impurities' removal efficiency for phosphorus, calcium and aluminum, magnesium, boron and iron. The deviation between the two results was also analyzed in depth.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2008BADC4B17 and 2006 BAD16B09)the Beijing Key Discipline Construction Project of Biomass Engineering Interdisciplinary
文摘In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon source in the underpart of the SWIS on nitrogen removal at different influents (with the total nitrogen (TN) concentration 40 and 80 mg L^-1, respectively) were investigated by soil column simulating experiments. When the relatively light pollution influent with 40 mg L^-1 TN was used, the average concentrations of NO3-N and TN in effluents were (4.69±0.235), (6.18±0.079) mg L^-1, respectively, decreased by 32 and 30.8% than the control; the NO3--N concentration of all effluents was below the maximum contaminant level of 10 mg L^-1; as high as 92.67% of the TN removal efficiency was achieved. When relatively heavy pollution influent with 80 mg LITN was used, the average concentrations of NO3--N and TN in effluents were (10.2±0.265), (12.5±0.148) mg L^-1 respectively, decreased by 20 and 21.2% than the control; the NO3--N concentration of all effluents met the grade Ⅲ of the national quality standard for ground water of China (GB/T 14848-1993) with the values less than 20 mg L^-1; the TN removal efficiency of 94.1% was achieved. In summary, adding peat in the underpart of the SWIS significantly decreased TN and NO3- -N concentration in effluents and the nitrogen removal efficiency improved significantly.