This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in diffe...This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages. The mainstream smoke particulate matter was collected by a Cambridge filter pad, digested by a microwave digestor, and then analyzed for contents of heavy metal ions, including As(Ill/V), Pb(II), Cd(II), Cr(III/VI) and Ni(II), by graphite furnace atomic absorption spectrometry (GFAAS). The results showed that chitosan had a removal effect on Pb(II), Cd(II), Cr(III/VI) and Ni(II). Of these, the percent re- moval of Ni(II) was elevated with an increasing dosage of chitosan. Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(II), Cr(III/VI) and Ni(II), though with poor efficiency for Pb(II). Except As(III/V), all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight. Nonetheless, the percent removal of Cr(III/VI) peaked with a chitosan molecular weight of 200 kDa, followed by a dramatic decrease with an increasing chitosan mo- lecular weight. Generally, chitosan had different removal effects on four out of five tested metal ions, and the percent removal of Cd(II), Pb(II), Cr(III/VI) and Ni(II) was approximately 55%, 45%, 50%, and 16%, respectively. In a word, chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke, improve cigarette safety, and reduce the harm to smokers.展开更多
Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon ...Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.展开更多
Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but...Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.展开更多
BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after...BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after endoscopic removal of malignant colorectal polyps.METHODS A single-center retrospective cohort study was conducted to evaluate outcomes after endoscopic removal of malignant colorectal polyps between 2010 and 2020.Residual disease rate and nodal metastases after secondary surgery and local and distant recurrence rate for those with at least 1 year of follow-up were invest-igated.Event rates for categorical variables and means for continuous variables with 95%confidence intervals were calculated,and Fisher’s exact test and Mann-Whitney test were performed.Potential risk factors of adverse outcomes were RESULTS In total,135 lesions(mean size:22.1 mm;location:42%rectal)from 129 patients(mean age:67.7 years;56%male)were enrolled.The proportion of pedunculated and non-pedunculated lesions was similar,with en bloc resection in 82%and 47%of lesions,respectively.Tumor differentiation,distance from resection margins,depth of submucosal invasion,lymphovascular invasion,and budding were reported at 89.6%,45.2%,58.5%,31.9%,and 25.2%,respectively.Residual tumor was found in 10 patients,and nodal metastasis was found in 4 of 41 patients who underwent secondary surgical resection.Univariate analysis identified piecemeal resection as a risk factor for residual malignancy(odds ratio:1.74;P=0.042).At least 1 year of follow-up was available for 117 lesions from 111 patients(mean follow-up period:5.59 years).Overall,54%,30%,30%,11%,and 16%of patients presented at the 1-year,3-year,5-year,7-year,and 9-10-year surveillance examinations.Adverse outcomes occurred in 9.0%(local recurrence and dissemination in 4 patients and 9 patients,respectively),with no difference between patients undergoing secondary surgery and surveillance only.CONCLUSION Reporting of histological features and adherence to surveillance colonoscopy needs improvement.Long-term adverse outcome rates might be higher than previously reported,irrespective of whether secondary surgery was performed.展开更多
Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulatio...Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.展开更多
Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to ...Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission.展开更多
Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and int...Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and integrated into a 10 t·d^(–1)coal pyrolysis facility.The testing results showed that around 97.56%dust collection efficiency was achieved.As a result,dust content in tar was significantly lowered.The pressure drop of the granular bed maintained in the range of 356 Pa to 489 Pa.The dust size in the effluent after filtration exhibited a bimodal distribution,which was attributed to the heterogeneity of the dust components.The effects of filtration bed on pyrolytic product yields were also discussed.A modified filtration model based on the macroscopic phenomenological theory was proposed to describe the performance of the granular bed.The computation results were well agreed with the experimental data.展开更多
In the Acknowledgments Section,please replace“Shell oil”for“TotalEnergies”.The authors would like to apologise for any inconvenience caused.For the sake of clarity(“Shell oil”should be removed and in boldblack“...In the Acknowledgments Section,please replace“Shell oil”for“TotalEnergies”.The authors would like to apologise for any inconvenience caused.For the sake of clarity(“Shell oil”should be removed and in boldblack“TotalEnergies”inserted),this section should say:The authors would like to thank Moura Batteries for the financial support.展开更多
Lysosomes are discrete organelles that act as recycling centers for extracellular and intracellular materials,playing a pivotal role in maintaining cellular homeostasis.Their acidic environment,maintained by numerous ...Lysosomes are discrete organelles that act as recycling centers for extracellular and intracellular materials,playing a pivotal role in maintaining cellular homeostasis.Their acidic environment,maintained by numerous hydrolytic enzymes,facilitates substrate degradation.Dysfunction in lysosomal processes can lead to abnormal substrate degradation,significantly impacting cellular homeostasis.High energy-demanding cells,such as post-mitotic neurons,are especially vulnerable to these changes,often resulting in neurological diseases.Autophagy,a conserved catabolic process,requires extensive lysosomal utilization.It plays a key role in removing unnecessary intracellular components,ensuring cellular homeostasis,and promoting cell survival during stress conditions such as starvation,infection,or cellular damage.展开更多
For decades,researchers have known that when neurons lose their activating inputs,they can atrophy and even die.For example,removing sensory nerve inputs from the arm to the spinal cord after amputation or cutting the...For decades,researchers have known that when neurons lose their activating inputs,they can atrophy and even die.For example,removing sensory nerve inputs from the arm to the spinal cord after amputation or cutting the spinal nerves can shrink the post-synaptic target zones(e.g.,Woods et al.,2000).From touch receptors for the hand and arm,primary nerve afferents enter the spinal cord,and axons travel in the dorsal columns to target the cuneate nucleus(Cu)of the brainstem on the same side of the body(Figure 1).When sensory loss is unilateral,the overwhelming result is for the associated primary target zone to shrink in total size(cross-sectional area),as compared to the size of the opposite side.展开更多
In the manufacturing of biotechnology drug products,the viral safety control strategy is a critical pharmaceutical quality management framework that contains three key elements:prevention,testing,and clearance.The pre...In the manufacturing of biotechnology drug products,the viral safety control strategy is a critical pharmaceutical quality management framework that contains three key elements:prevention,testing,and clearance.The prevention strategy involves rigorous screening for any adventitious virus contamination in the raw materials,reagents,and endogenous/adventitious virus contamination in the cell banks.展开更多
Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrosp...Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques.The materials possessed an organic-inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile(PAN)and SiO_(2).As a sup-porting material,the surface of fibrous SiO_(2) could be further functionalized by cyano groups via(3-cyanopropyl)triethoxysilane.All the cyano groups were turned into amidoxime(AO)groups to obtain a amidoxime-functionalized sponge(PAO/SiO_(2)-AO)through the subsequent ami-doximation process.The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12 mg/g,a large adsorption coefficient of 4.0×10^(4)mL/g,and a high removal efficiency of 97.59%.The UO_(2)^(2+)adsorption kinetics perfectly conformed to the pseudo-second-order reaction.The sorbent also exhibited an excellent selectivity for UO_(2)^(2+) with other interfering metal ions.2023 Hohai University.Production and hosting by Elsevier B.V.展开更多
Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation stra...Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation strategies in the near future.In this study,we generate a dataset by conducting an experiment involving carbon dioxide removal(CDR)—a potential way to suppress global warming—using the Chinese Academy of Sciences Earth System Model version 2.0(CASESM2.0).A preliminary evaluation is provided.The model is integrated from 200–340 years as a 1%yr^(−1) CO_(2) concentration increase experiment,and then to~478 years as a carbon dioxide removal experiment until CO_(2) returns to its original value.Finally,another 80 years is integrated in which CO_(2) is kept constant.Changes in the 2-m temperature,precipitation,sea surface temperature,ocean temperature,Atlantic meridional overturning circulation(AMOC),and sea surface height are all analyzed.In the ramp-up period,the global mean 2-m temperature and precipitation both increase while the AMOC weakens.Values of all the above variables change in the opposite direction in the ramp-down period,with a delayed peak relative to the CO_(2) peak.After CO_(2) returns to its original value,the global mean 2-m temperature is still~1 K higher than in the original state,and precipitation is~0.07 mm d^(–1) higher.At the end of the simulation,there is a~0.5°C increase in ocean temperature and a 1 Sv weakening of the AMOC.Our model simulation produces similar results to those of comparable experiments previously reported in the literature.展开更多
Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.Howev...Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption.展开更多
Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the...Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.展开更多
The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of...The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.展开更多
In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,an...In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,and pipe stuck probably occur,which results in a lot of non-productive time and remedial operations.Cuttings bed remover can efficiently destroy deposited cuttings in time through hydraulic and mechanical stirring effects.This paper aims to build a method for hole cleaning evaluation and installation spacing optimization of cuttings bed remover to improve the wellbore cleaning effect.Firstly,a Computational Fluid Dynamics approach with Eulerian—Eulerian multiphase model was utilized to investigate the mechanism of cuttings transportation,and a new type of cuttings bed remover was designed.Next,an evaluation method of hole cleaning effect of remover was established.After that,the effects of several drilling parameters on hole cleaning including flow rate of drilling fluid,rotational speed of drillpipe,rate of penetration,wellbore size,rheological property of drilling fluid,and remover eccentricity on the performance of cuttings bed remover were investigated.The results demonstrate that the new type of remover with streamline blade performs better than conventional removers.The efficiency of hole cleaning is greatly improved by increasing the rotational speed of drillpipe,flow rate of drilling fluid,remover eccentricity,and 6 rpm Fann dial reading for drilling fluid.While higher rate of penetration and large wellbore size result in worse hole cleaning.These findings can serve as an important guide for the structure optimization design of cuttings bed remover and installation spacing of removers.展开更多
There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of ...There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of network structure on network spreading. Motifs, as fundamental structures within a network, play a significant role in spreading. Therefore, it is of interest to investigate the influence of the structural characteristics of basic network motifs on spreading dynamics.Considering the edges of the basic network motifs in an undirected network correspond to different tie ranges, two edge removal strategies are proposed, short ties priority removal strategy and long ties priority removal strategy. The tie range represents the second shortest path length between two connected nodes. The study focuses on analyzing how the proposed strategies impact network spreading and network structure, as well as examining the influence of network structure on network spreading. Our findings indicate that the long ties priority removal strategy is most effective in controlling network spreading, especially in terms of spread range and spread velocity. In terms of network structure, the clustering coefficient and the diameter of network also have an effect on the network spreading, and the triangular structure as an important motif structure effectively inhibits the spreading.展开更多
Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the...Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.展开更多
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and...Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.展开更多
基金supported by the Natural Science Foundation of China(No.30972289)Ocean Public Welfare Scientific Research Special Appropriation Project(No.201005020)
文摘This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages. The mainstream smoke particulate matter was collected by a Cambridge filter pad, digested by a microwave digestor, and then analyzed for contents of heavy metal ions, including As(Ill/V), Pb(II), Cd(II), Cr(III/VI) and Ni(II), by graphite furnace atomic absorption spectrometry (GFAAS). The results showed that chitosan had a removal effect on Pb(II), Cd(II), Cr(III/VI) and Ni(II). Of these, the percent re- moval of Ni(II) was elevated with an increasing dosage of chitosan. Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(II), Cr(III/VI) and Ni(II), though with poor efficiency for Pb(II). Except As(III/V), all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight. Nonetheless, the percent removal of Cr(III/VI) peaked with a chitosan molecular weight of 200 kDa, followed by a dramatic decrease with an increasing chitosan mo- lecular weight. Generally, chitosan had different removal effects on four out of five tested metal ions, and the percent removal of Cd(II), Pb(II), Cr(III/VI) and Ni(II) was approximately 55%, 45%, 50%, and 16%, respectively. In a word, chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke, improve cigarette safety, and reduce the harm to smokers.
文摘Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.
基金supported by the Research Council of Norway under contracts 223252/F50 and 300844/F50the Trond Mohn Foundation。
文摘Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.
基金Supported by the New National Excellence Program of the Ministry for Innovation and Technology From the Source of the National Research,Development and Innovation Fund,No.ÚNKP-22-4-SZTE-296,No.ÚNKP-23-3-SZTE-268,and No.ÚNKP-23-5-SZTE-719the EU’s Horizon 2020 Research and Innovation Program under Grant Agreement,No.739593.
文摘BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after endoscopic removal of malignant colorectal polyps.METHODS A single-center retrospective cohort study was conducted to evaluate outcomes after endoscopic removal of malignant colorectal polyps between 2010 and 2020.Residual disease rate and nodal metastases after secondary surgery and local and distant recurrence rate for those with at least 1 year of follow-up were invest-igated.Event rates for categorical variables and means for continuous variables with 95%confidence intervals were calculated,and Fisher’s exact test and Mann-Whitney test were performed.Potential risk factors of adverse outcomes were RESULTS In total,135 lesions(mean size:22.1 mm;location:42%rectal)from 129 patients(mean age:67.7 years;56%male)were enrolled.The proportion of pedunculated and non-pedunculated lesions was similar,with en bloc resection in 82%and 47%of lesions,respectively.Tumor differentiation,distance from resection margins,depth of submucosal invasion,lymphovascular invasion,and budding were reported at 89.6%,45.2%,58.5%,31.9%,and 25.2%,respectively.Residual tumor was found in 10 patients,and nodal metastasis was found in 4 of 41 patients who underwent secondary surgical resection.Univariate analysis identified piecemeal resection as a risk factor for residual malignancy(odds ratio:1.74;P=0.042).At least 1 year of follow-up was available for 117 lesions from 111 patients(mean follow-up period:5.59 years).Overall,54%,30%,30%,11%,and 16%of patients presented at the 1-year,3-year,5-year,7-year,and 9-10-year surveillance examinations.Adverse outcomes occurred in 9.0%(local recurrence and dissemination in 4 patients and 9 patients,respectively),with no difference between patients undergoing secondary surgery and surveillance only.CONCLUSION Reporting of histological features and adherence to surveillance colonoscopy needs improvement.Long-term adverse outcome rates might be higher than previously reported,irrespective of whether secondary surgery was performed.
基金supported by the National Natural Science Foundation of China(52375420,52005134 and51675453)Natural Science Foundation of Heilongjiang Province of China(YQ2023E014)+5 种基金Self-Planned Task(No.SKLRS202214B)of State Key Laboratory of Robotics and System(HIT)China Postdoctoral Science Foundation(2022T150163)Young Elite Scientists Sponsorship Program by CAST(No.YESS20220463)State Key Laboratory of Robotics and System(HIT)(SKLRS-2022-ZM-14)Open Fund of Key Laboratory of Microsystems and Microstructures Manufacturing(HIT)(2022KM004)Fundamental Research Funds for the Central Universities(Grant Nos.HIT.OCEF.2022024 and FRFCU5710051122)。
文摘Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.
基金the supports from Debris of the Anthropocene to Resources(DotA2)Lab at NTU.
文摘Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission.
基金financial support from the National Key Research and Development Program of China(2018YFB0605003).
文摘Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and integrated into a 10 t·d^(–1)coal pyrolysis facility.The testing results showed that around 97.56%dust collection efficiency was achieved.As a result,dust content in tar was significantly lowered.The pressure drop of the granular bed maintained in the range of 356 Pa to 489 Pa.The dust size in the effluent after filtration exhibited a bimodal distribution,which was attributed to the heterogeneity of the dust components.The effects of filtration bed on pyrolytic product yields were also discussed.A modified filtration model based on the macroscopic phenomenological theory was proposed to describe the performance of the granular bed.The computation results were well agreed with the experimental data.
文摘In the Acknowledgments Section,please replace“Shell oil”for“TotalEnergies”.The authors would like to apologise for any inconvenience caused.For the sake of clarity(“Shell oil”should be removed and in boldblack“TotalEnergies”inserted),this section should say:The authors would like to thank Moura Batteries for the financial support.
文摘Lysosomes are discrete organelles that act as recycling centers for extracellular and intracellular materials,playing a pivotal role in maintaining cellular homeostasis.Their acidic environment,maintained by numerous hydrolytic enzymes,facilitates substrate degradation.Dysfunction in lysosomal processes can lead to abnormal substrate degradation,significantly impacting cellular homeostasis.High energy-demanding cells,such as post-mitotic neurons,are especially vulnerable to these changes,often resulting in neurological diseases.Autophagy,a conserved catabolic process,requires extensive lysosomal utilization.It plays a key role in removing unnecessary intracellular components,ensuring cellular homeostasis,and promoting cell survival during stress conditions such as starvation,infection,or cellular damage.
基金supported by National Institute of Health Grant NINDS NS16446 to JHK and NS067017 to HXQsupported by NIH NINDS NS129982 and NIH NEI EY002686 to JHK
文摘For decades,researchers have known that when neurons lose their activating inputs,they can atrophy and even die.For example,removing sensory nerve inputs from the arm to the spinal cord after amputation or cutting the spinal nerves can shrink the post-synaptic target zones(e.g.,Woods et al.,2000).From touch receptors for the hand and arm,primary nerve afferents enter the spinal cord,and axons travel in the dorsal columns to target the cuneate nucleus(Cu)of the brainstem on the same side of the body(Figure 1).When sensory loss is unilateral,the overwhelming result is for the associated primary target zone to shrink in total size(cross-sectional area),as compared to the size of the opposite side.
文摘In the manufacturing of biotechnology drug products,the viral safety control strategy is a critical pharmaceutical quality management framework that contains three key elements:prevention,testing,and clearance.The prevention strategy involves rigorous screening for any adventitious virus contamination in the raw materials,reagents,and endogenous/adventitious virus contamination in the cell banks.
基金supported by the Opening Project of the Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource(Grant No.2021ABPCR010)the Natural Science Research Project of Jiangsu Higher Education Institutions of China(Grants No.20KJB150035,21KJD610004,and 21KJA530004).
文摘Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques.The materials possessed an organic-inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile(PAN)and SiO_(2).As a sup-porting material,the surface of fibrous SiO_(2) could be further functionalized by cyano groups via(3-cyanopropyl)triethoxysilane.All the cyano groups were turned into amidoxime(AO)groups to obtain a amidoxime-functionalized sponge(PAO/SiO_(2)-AO)through the subsequent ami-doximation process.The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12 mg/g,a large adsorption coefficient of 4.0×10^(4)mL/g,and a high removal efficiency of 97.59%.The UO_(2)^(2+)adsorption kinetics perfectly conformed to the pseudo-second-order reaction.The sorbent also exhibited an excellent selectivity for UO_(2)^(2+) with other interfering metal ions.2023 Hohai University.Production and hosting by Elsevier B.V.
基金jointly supported by the National Key Research and Development Program of China (Grant No. 2022YFC3105000)the Youth Innovation Promotion Association of CAS (2022074)+3 种基金the National Natural Science Foundation of China (Grant Nos. 42005123, 42275173 and 41706028)the National Key Research and Development Program of China(2022YFE0106500)the 7th Youth Talent Support Project of Ningxia Hui Autonomous Region Association for Science and TechnologyNational Key Scientific and Technological Infrastructure project ‘‘Earth System Science Numerical Simulator Facility’’(EarthLab) for supporting the simulations in this study
文摘Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation strategies in the near future.In this study,we generate a dataset by conducting an experiment involving carbon dioxide removal(CDR)—a potential way to suppress global warming—using the Chinese Academy of Sciences Earth System Model version 2.0(CASESM2.0).A preliminary evaluation is provided.The model is integrated from 200–340 years as a 1%yr^(−1) CO_(2) concentration increase experiment,and then to~478 years as a carbon dioxide removal experiment until CO_(2) returns to its original value.Finally,another 80 years is integrated in which CO_(2) is kept constant.Changes in the 2-m temperature,precipitation,sea surface temperature,ocean temperature,Atlantic meridional overturning circulation(AMOC),and sea surface height are all analyzed.In the ramp-up period,the global mean 2-m temperature and precipitation both increase while the AMOC weakens.Values of all the above variables change in the opposite direction in the ramp-down period,with a delayed peak relative to the CO_(2) peak.After CO_(2) returns to its original value,the global mean 2-m temperature is still~1 K higher than in the original state,and precipitation is~0.07 mm d^(–1) higher.At the end of the simulation,there is a~0.5°C increase in ocean temperature and a 1 Sv weakening of the AMOC.Our model simulation produces similar results to those of comparable experiments previously reported in the literature.
基金This work is financially supported by the National Science Foundation of Tianjin(17JCYBJC23300).
文摘Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption.
基金This work is supported by the Macao Science and Technology Development Fund(FDCT)under Grant 0041/2022/A1by the Research Committee of University of Macao under Grant MYRG2022-00004-IME.
文摘Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.
基金supported by the Natural Scienceof Shandong Province,China(ZR2019MEE033)。
文摘The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.
基金the financial support from the Natural Science Foundation of China(Grant Nos.52222401,52234002,52394250,52394255)Science Foundation of China University of Petroleum,Beijing(Grant No.ZXZX20230083)other projects(ZLZX2020-01-07-01)。
文摘In extended-reach or long-horizontal drilling,cuttings usually deposit at the bottom of the annulus.Once cuttings accumulate to a certain thickness,complex problems such as excessive torque and drag,tubing buckling,and pipe stuck probably occur,which results in a lot of non-productive time and remedial operations.Cuttings bed remover can efficiently destroy deposited cuttings in time through hydraulic and mechanical stirring effects.This paper aims to build a method for hole cleaning evaluation and installation spacing optimization of cuttings bed remover to improve the wellbore cleaning effect.Firstly,a Computational Fluid Dynamics approach with Eulerian—Eulerian multiphase model was utilized to investigate the mechanism of cuttings transportation,and a new type of cuttings bed remover was designed.Next,an evaluation method of hole cleaning effect of remover was established.After that,the effects of several drilling parameters on hole cleaning including flow rate of drilling fluid,rotational speed of drillpipe,rate of penetration,wellbore size,rheological property of drilling fluid,and remover eccentricity on the performance of cuttings bed remover were investigated.The results demonstrate that the new type of remover with streamline blade performs better than conventional removers.The efficiency of hole cleaning is greatly improved by increasing the rotational speed of drillpipe,flow rate of drilling fluid,remover eccentricity,and 6 rpm Fann dial reading for drilling fluid.While higher rate of penetration and large wellbore size result in worse hole cleaning.These findings can serve as an important guide for the structure optimization design of cuttings bed remover and installation spacing of removers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62373197 and 62203229)the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX24_1211)。
文摘There are various phenomena of malicious information spreading in the real society, which cause many negative impacts on the society. In order to better control the spreading, it is crucial to reveal the influence of network structure on network spreading. Motifs, as fundamental structures within a network, play a significant role in spreading. Therefore, it is of interest to investigate the influence of the structural characteristics of basic network motifs on spreading dynamics.Considering the edges of the basic network motifs in an undirected network correspond to different tie ranges, two edge removal strategies are proposed, short ties priority removal strategy and long ties priority removal strategy. The tie range represents the second shortest path length between two connected nodes. The study focuses on analyzing how the proposed strategies impact network spreading and network structure, as well as examining the influence of network structure on network spreading. Our findings indicate that the long ties priority removal strategy is most effective in controlling network spreading, especially in terms of spread range and spread velocity. In terms of network structure, the clustering coefficient and the diameter of network also have an effect on the network spreading, and the triangular structure as an important motif structure effectively inhibits the spreading.
基金supported by the National Natural Science Foundation of China[Nos.U21A20332,52103226,52202275,52203314,and 12204253]the Distinguished Young Scholars Fund of Jiangsu Province[No.BK20220061]the Fellowship of China Postdoctoral Science Foundation[No.2021M702382]。
文摘Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.
基金supported by the National Key Research and Development Program of China(2016YFD0600201)the National Nonprofit Institute Research Grant of CAF(CAFYBB2017ZB003)+1 种基金the National Natural Science Foundation of China(3187071631670720)。
文摘Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.