期刊文献+
共找到765篇文章
< 1 2 39 >
每页显示 20 50 100
Enhancing Renewable Energy Integration:A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks
1
作者 Ali S.Alghamdi Mohamed A.Zohdy Saad Aldoihi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1339-1370,共32页
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n... In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids. 展开更多
关键词 renewable energy integration optimal power flow stochastic renewable energy sources gaussian-bare-bones levy cheetah optimizer electrical network optimization carbon tax optimization
下载PDF
Lightweight innovation ADIs help development of renewable energy and new technology industries in China
2
作者 Qi-dong Yan Xu-dong Gong +1 位作者 Wen-bang Gong Jin-cheng Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期507-515,共9页
The world is undergoing profound changes in energy and technology.Countries are vigorously developing new sustainable energy sources and technologies.Renewable energy sources encompass various technologies such as win... The world is undergoing profound changes in energy and technology.Countries are vigorously developing new sustainable energy sources and technologies.Renewable energy sources encompass various technologies such as wind turbines,solar energy,nuclear energy,and bioenergy.Additionally,emerging technology fields include new energy vehicles,robots,and artificial intelligence devices,among others.The renewable energy industries and implementation of new technologies necessitate the development and adoption of new equipment and components.Austempered ductile iron(ADI)is renowned for its unique microstructure and superior properties.By utilizing ADI,lightweight and innovative castings can be designed to not only reduce weight but also save energy and decrease emissions.More importantly,these castings enhance the efficiency and reliability of new energy equipment and emerging technology installations.This paper describes the development,applications,and future prospects of lightweight and innovative ADI castings within sectors such as solar photovoltaic(PV),wind power generation,industry robots,and trucks in China. 展开更多
关键词 LIGHTWEIGHT ADI renewable energy emission reduction
下载PDF
Intelligent Fractional-Order Controller for SMES Systems in Renewable Energy-Based Microgrid
3
作者 Aadel M.Alatwi Abualkasim Bakeer +3 位作者 Sherif A.Zaid Ibrahem E.Atawi Hani Albalawi Ahmed M.Kassem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1807-1830,共24页
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe... An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES. 展开更多
关键词 Fractional-order proportional integral(FOPI) intelligent controller renewable energy resources superconducting magnetic energy storage OPTIMIZATION
下载PDF
Characteristics of Biopellets Manufactured from Various Lignocellulosic Feedstocks as Alternative Renewable Energy Sources
4
作者 Anggara Ridho Putra Apri Heri Iswanto +7 位作者 Arif Nuryawan Saptadi Darmawan ElvaraWindra Madyaratri Widya Fatriasari Lee Seng Hua Petar Antov Harisyah Manurung Ade Pera Amydha Sudrajat Herawati Pendi 《Journal of Renewable Materials》 EI CAS 2024年第6期1103-1123,共21页
The increased valorization of renewable and cost-effective lignocellulosic feedstocks represents a viable,sustainable,and eco-friendly approach toward the production of biopellets as alternative energy sources.The aim... The increased valorization of renewable and cost-effective lignocellulosic feedstocks represents a viable,sustainable,and eco-friendly approach toward the production of biopellets as alternative energy sources.The aim of this research work was to investigate and evaluate the feasibility of using various lignocellulosic raw materials,i.e.,raru(Cotylelobium melanoxylon),mangrove(Rhizophora spp.),sengon(Paraserianthes falcataria),kemenyan toba(Styrax sumatrana),oil palm(Elaeis guineensis),manau rattan(Calamus manan),and belangke bamboo(Gigantochloa pruriens)for manufacturing biopellets with different particle sizes.The raw materials used were tested for their moisture content,specific gravity,ash,cellulose,and lignin content.In addition,thermal analyses,i.e.,calorific values,thermogravimetric analysis(TGA),and differential scanning calorimetry(DSC),were performed.The following properties of the biopellets produced were investigated:moisture content,volatile matter,ash content,fixed carbon,density,and thermal analyses.Based on an analysis of the raw materials,raru had the lowest moisture content(12%)and ash content(1.5%)and the highest specific gravity(1.2).Markedly,palm oil stem had the highestα-cellulose(55%)and lignin(37%)content.In accordance with the SNI 8675:2018 standard requirements,biopellets with optimal properties(moisture content of 1.4%,ash content of 0.79%,density of 1.09 g/m^(3),calorific value of 4672 cal/g,and TGA residue of 13.9%),were manufactured from raru wood. 展开更多
关键词 BIOMASS biopellet renewable energy particle size
下载PDF
Hydroelectric and Hydrogen Storage Systems for Electric Energy Produced from Renewable Energy Sources
5
作者 Saif Serag Adil Echchelh Biagio Morrone 《Energy Engineering》 EI 2024年第10期2719-2741,共23页
Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system e... Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system efficiency and manage energy costs.This paper investigates renewable and clean storage systems,specifically examining the storage of electricity generated from renewable sources using hydropower plants and hydrogen,both of which are highly efficient and promising for future energy production and storage.The study utilizes extensive literature data to analyze the impact of various parameters on the cost per kWh of electricity production in hybrid renewable systems incorporating hydropower and hydrogen storage plants.Results indicate that these hybrid systems can store electricity efficiently and cost-effectively,with production costs ranging from 0.126 to 0.3$/kWh for renewablehydropower systems and 0.118 to 0.42$/kWh for renewable-hydrogen systems,with expected cost reductions over the next decade due to technological advancements and increased market adoption.The novelty of this study lies in its comprehensive comparison of hybrid renewable systems integrating hydropower and hydrogen storage,providing detailed cost analysis and future projections.It identifies key parameters influencing the cost and efficiency of these systems,offering insights into optimizing storage solutions for renewable energy.Moreover,this research underscores the potential of hybrid systems to reduce dependency on fossil fuels,particularly during peak demand periods,and emphasizes the importance of seasonal and geographic considerations in selecting energy sources.The study highlights the importance of policy support and investment in hybrid renewable systems and calls for further research into optimizing these systems for different seasonal and geographic conditions.Overall,the integration of renewable energy sources with hydropower and hydrogen storage offers a promising pathway to a sustainable,economical,and resilient energy future. 展开更多
关键词 energy storage HYDROPOWER HYDROGEN renewable energy hybrid system
下载PDF
A Two-Layer Active Power Optimization and Coordinated Control for Regional Power Grid Partitioning to Promote Distributed Renewable Energy Consumption
6
作者 Wentao Li Jiantao Liu +3 位作者 Yudun Li GuoxinMing Kaifeng Zhang Kun Yuan 《Energy Engineering》 EI 2024年第9期2479-2503,共25页
With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener... With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid. 展开更多
关键词 renewable energy consumption active power optimization power grid partitioning industrial flexible loads line over-limit
下载PDF
ANovel Non-Isolated Cubic DC-DC Converter with High Voltage Gain for Renewable Energy Power Generation System
7
作者 Qin Yao Yida Zeng Qingui Jia 《Energy Engineering》 EI 2024年第1期221-241,共21页
In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effec... In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems. 展开更多
关键词 Cubic DC-DC converter high voltage gain low device stress high efficiency renewable energy
下载PDF
Estimation of Landfill Gas and Its Renewable Energy Potential from the Polesgo Controlled Landfill Using First-Order Decay (FOD) Models
8
作者 Haro Kayaba Ouarma Issoufou +4 位作者 Dabilgou Téré Compaore Abdoulaye Sanogo Oumar Bere Antoine Koulidiati Jean 《Journal of Environmental Protection》 2024年第10期975-993,共19页
Methane generation in landfills and its inadequate management represent the major avoidable source of anthropogenic methane today. This paper models methane production and the potential resources expected (electrical ... Methane generation in landfills and its inadequate management represent the major avoidable source of anthropogenic methane today. This paper models methane production and the potential resources expected (electrical energy production and potential carbon credits from avoided CH4 emissions) from its proper management in a municipal solid waste landfill located in Ouagadougou, Burkina Faso. The modeling was carried out using two first-order decay (FOD) models (LandGEM V3.02 and SWANA) using parameters evaluated on the basis of the characteristics of the waste admitted to the landfill and weather data for the site. At the same time, production data have been collected since 2016 in order to compare them with the model results. The results obtained from these models were compared to experimental one. For the simulation of methane production, the SWANA model showed better consistency with experimental data, with a coefficient of determination (R²) of 0.59 compared with the LandGEM model, which obtained a coefficient of 0.006. Thus, despite the low correlation values linked to the poor consistency of experimental data, the SWANA model models methane production much better than the LandGEM model. Thus, despite the low correlation values linked to the poor consistency of the experimental data, the SWANA model models methane production much better than the LandGEM V3.02 model. It was noted that the poor consistency of the experimental data justifies these low coefficients, and that they can be improved in the future thanks to ongoing in situ measurements. According to the SWANA model prediction, in 27 years of operation a biogas plant with 33% electrical efficiency using biogas from the Polesgo landfill would avoid 1,340 GgCO2e. Also, the evaluation of revenues due to electricity and carbon credit gave a total revenue derived from methane production of US$27.38 million at a cost of US$10.5/tonne CO2e. 展开更多
关键词 First-Order Decay METHANE Modeling LANDFILL renewable energy
下载PDF
Renewable Energy: Prospects and Challenges in Bangladesh
9
作者 Abul Fattah Mohammad Masum Rabbani Md. Masudur Rahman Rahat +1 位作者 Ahsan Habib Md. Nazrul Islam 《Energy and Power Engineering》 2024年第2期43-78,共36页
Among expert scientists and politicians, there is increasing agreement that it is absolutely necessary to reduce the emission of greenhouse gas (GHG) to lessen the severity of climate change. Although little, renewabl... Among expert scientists and politicians, there is increasing agreement that it is absolutely necessary to reduce the emission of greenhouse gas (GHG) to lessen the severity of climate change. Although little, renewable energy sources currently reduce GHG that are being emitted from the energy industries. According to the majority of long-term energy estimates, renewable energy will be a substantial addition to the supply of energy worldwide by the end of this century, as capacity of renewable energy is gradually increasing in the early decades. However, developing nations like Bangladesh are largely reliant on pricey imported energy supplies (coal, gas, and oil) that lay a heavy weight on the country’s economy. Also, air pollution growing in importance as a national and international environmental issue. Regarding the development of clean and sustainable energy, renewable energy sources seem to be among the most practical and efficient alternatives, in both Bangladesh and globally. The geographic advantages of Bangladesh allow for widespread usage of the majority of such renewable energy sources. The comparative potential and use of fossil fuels against renewable energy sources globally and in Bangladesh is explored in this review. 展开更多
关键词 renewable energy Solar and Photovoltaics HYDROPOWER Wind energy GEOTHERMAL
下载PDF
Renewable Energy Development in OAPEC Countries: History, Current Status, and Outlook
10
作者 Salem Baidas 《Open Journal of Energy Efficiency》 2024年第2期38-56,共19页
The renewable energy industry has grown its contribution to the global energy mix, particularly in terms of electricity generation. This study investigates the implications of an increasing renewable energy share on O... The renewable energy industry has grown its contribution to the global energy mix, particularly in terms of electricity generation. This study investigates the implications of an increasing renewable energy share on OAPEC countries and proposes a comprehensible policy strategy for the region. Four main topics are discussed: scientific and engineering principles of renewable energy utilization, current strategies for electricity generation in each OAPEC member country, economic and environmental implications of the energy transition under two future scenarios, as well as political interactions between oil-consuming and oil-producing countries. Based on this study, realistic and cost-effective strategies are proposed for OAPEC countries to better leverage their significant renewable energy resources while stabilizing fossil fuel supplies and strengthening their position in the global energy market. To mitigate the negative impacts of the energy transition, OAPEC countries are encouraged to take the following steps: 1) Developing renewable energy in conjunction with fossil fuel resources to reduce local demand for fossil fuel and increase the supply for exportation;2) Reviewing economic policies, environmental regulations, and carbon taxes imposed by oil-consuming countries;3) Increasing investment in renewable energy infrastructure;4) Cooperating to achieve a balance between economic development and environmental protection. 展开更多
关键词 OAPEC renewable energy Global energy Mix Solar energy Wind energy Fossil Fuel
下载PDF
Application of Power Electronics Converters in Renewable Energy
11
作者 Tao Cheng 《Journal of Electronic Research and Application》 2024年第4期101-107,共7页
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters... Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development. 展开更多
关键词 Power electronics converters renewable energy Photovoltaic power generation Wind power generation energy storage systems High-efficiency energy conversion Multilevel conversion New materials New devices
下载PDF
Water electrolysis based on renewable energy for hydrogen production 被引量:100
12
作者 Jun Chi Hongmei Yu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第3期390-394,共5页
As an energy storage medium,hydrogen has drawn the attention of research institutions and industry over the past decade,motivated in part by developments in renewable energy,which have led to unused surplus wind and p... As an energy storage medium,hydrogen has drawn the attention of research institutions and industry over the past decade,motivated in part by developments in renewable energy,which have led to unused surplus wind and photovoltaic power.Hydrogen production from water electrolysis is a good option to make full use of the surplus renewable energy.Among various technologies for producing hydrogen,water electrolysis using electricity from renewable power sources shows greatpromise.To investigate the prospects of water electrolysis for hydrogen production,this review compares different water electrolysis processes,i.e.,alkaline water electrolysis,proton exchange membrane water electrolysis,solid oxide water electrolysis,and alkaline anion exchange membrane water electrolysis.The ion transfer mechanisms,operating characteristics,energy consumption,and industrial products of different water electrolysis apparatus are introduced in this review.Prospects for new water electrolysis technologies are discussed. 展开更多
关键词 Water electrolysis Hydrogen production renewable energy Abandoned solar power Abandoned wind power
下载PDF
Marine Renewable Energy Seascape 被引量:14
13
作者 Alistair G.L.Borthwick 《Engineering》 SCIE EI 2016年第1期69-78,共10页
Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation m... Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE) seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, leg- islation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE. 展开更多
关键词 Marine renewable energy Offshore wind Tidal stream Ocean current Tidal range Wave energy Ocean thermal energyBioenergySustainability
下载PDF
Large-Scale Renewable Energy Transmission by HVDC: Challenges and Proposals 被引量:11
14
作者 Weisheng Wang Guanghui Li Jianbo Guo 《Engineering》 SCIE EI CAS 2022年第12期252-267,共16页
Renewable energy transmission by high-voltage direct current(HVDC)has attracted increasing attention for the development and utilization of large-scale renewable energy under the Carbon Peak and Carbon Neutrality Stra... Renewable energy transmission by high-voltage direct current(HVDC)has attracted increasing attention for the development and utilization of large-scale renewable energy under the Carbon Peak and Carbon Neutrality Strategy in China.High-penetration power electronic systems(HPPESs)have gradually formed at the sending end of HVDC transmission.The operation of such systems has undergone profound changes compared with traditional power systems dominated by synchronous generators.New stability issues,such as broadband oscillation and transient over-voltage,have emerged,causing tripping accidents in large-scale renewable energy plants.The analysis methods and design principles of traditional power systems are no longer suitable for HPPESs.In this paper,the mechanisms of broadband oscillation and transient over-voltage are revealed,and analytical methods are proposed for HPPESs,including small-signal impedance analysis and electromagnetic transient simulation.Validation of the theoretical research has been accomplished through its application in several practical projects in north,northwest,and northeast region of China.Finally,suggestions for the construction and operation of the future renewable-energy-dominated power system are put forward. 展开更多
关键词 Broadband oscillation Future power system HVDC transmission renewable energy generation Transient over-voltage
下载PDF
Low-carbon generation expansion planning considering uncertainty of renewable energy at multi-time scales 被引量:14
15
作者 Yuanze Mi Chunyang Liu +2 位作者 Jinye Yang Hengxu Zhang Qiuwei Wu 《Global Energy Interconnection》 EI CAS CSCD 2021年第3期261-272,共12页
With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and ... With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and a lowcarbon economy.In this paper,a two-layer low-carbon expansion generation planning approach considering the uncertainty of renewable energy at multiple time scales is proposed.First,renewable energy sequences considering the uncertainty in multiple time scales are generated based on the Copula function and the probability distribution of renewable energy.Second,a two-layer generation planning model considering carbon trading and carbon capture technology is established.Specifically,the upper layer model optimizes the investment decision considering the uncertainty at a monthly scale,and the lower layer one optimizes the scheduling considering the peak shaving at an hourly scale and the flexibility at a 15-minute scale.Finally,the results of different influence factors on low-carbon generation expansion planning are compared in a provincial power grid,which demonstrate the effectiveness of the proposed model. 展开更多
关键词 renewable energy Multi-time scales UNCERTAINTY Low-carbon Generation planning
下载PDF
Evaluation index system of shared energy storage market towards renewable energy accommodation scenario:A China’s Qinghai province context 被引量:14
16
作者 Baomin Fang Weiqiang Qiu +3 位作者 Maochun Wang Wei Zhou Zhenzhi Lin Fushuan Wen 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期77-95,共19页
With the ever-increased installed capacity of renewable energy generation units in a power system,the so-called shared energy storage(SES),a novel business model under the umbrella of the shared economy principle,has ... With the ever-increased installed capacity of renewable energy generation units in a power system,the so-called shared energy storage(SES),a novel business model under the umbrella of the shared economy principle,has the potential to play an essential role in the accommodation of renewable energy generation.However,unified evaluation standards and methods,which can help decision-makers analyze the performance of the SES market,are still not available.In this paper,an evaluation index system of the SES market is designed based on the trading rules of China’s Qinghai province and the structure-conduct-performance(SCP)analytical model.Moreover,the definition and characteristics of the indices,which can show the performance of the SES market from different perspectives,are given.Furthermore,the ideal cases are presented as the evaluation benchmark based on the development expectation of the SES market,and the analytic hierarchy process(AHP)and the technique for order preference by similarity to an ideal solution(TOPSIS)are applied to evaluate the SES market comprehensively.Finally,a case study based on actual data of the SES trading pilot project in Qinghai shows that the evaluation index system can reflect the operation status,existing problems and influencing factors of the SES market. 展开更多
关键词 Shared energy storage(SES) renewable energy accommodation scenario Evaluation index system Ancillary service market
下载PDF
Bottlenecks and Countermeasures of High-Penetration Renewable Energy Development in China 被引量:11
17
作者 Jizhen Liu Qinghua Wang +1 位作者 Ziqiu Song Fang Fang 《Engineering》 SCIE EI 2021年第11期1611-1622,共12页
China has become the world’s largest producer and consumer of energy,and ranks first in its wind and solar power installation capacity.However,serious wind and solar curtailment in China has significantly hindered th... China has become the world’s largest producer and consumer of energy,and ranks first in its wind and solar power installation capacity.However,serious wind and solar curtailment in China has significantly hindered the development and utilization of renewable energy.To address problems in the consumption of renewable energy,this paper analyzes four key factors affecting the capacity of power generated from renewable energy sources:power balance,power regulation performance,transmission capacity,and load level.Focusing on these bottlenecks,we propose seven solutions:centralized and distributed development of renewable energy,improving the peak-load regulation flexibility of thermal power,increasing the proportion of gas turbines and pumped-hydropower storage,construction of transmission channels and a flexible smart grid developing demand response and virtual power plants,adopting new energy active support and energy storage,and establishing appropriate policies and market mechanisms.The Chinese Government and energy authorities have issued a series of policies and measures,and in the past three years,China has had remarkable achievements in the adoption of renewable energy.The rate of idle wind capacity decreased from 17%in 2016 to 7%in 2018,and that of solar decreased from 10%in 2016 to 3%in 2018. 展开更多
关键词 BOTTLENECKS COUNTERMEASURES Idle wind and solar power renewable energy
下载PDF
Marine renewable energy in China: Current status and perspectives 被引量:7
18
作者 Yong-liang ZHANG Zheng LIN Qiu-lin LIU 《Water Science and Engineering》 EI CAS CSCD 2014年第3期288-305,共18页
Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy... Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy, ocean thermal energy, and salinity gradient energy in China's coastal seas, such as the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea, is presented. We have found that these kinds of marine renewable energy resources will play an important role in meeting China's future energy needs. Additionally, considering the uneven distribution of China's marine renewable energy and the influences of its exploitation on the environment, we have suggested several sites with great potential for each kind of marine energy. Furthermore, perspectives on and challenges related with marine renewable energy in China are addressed. 展开更多
关键词 renewable energy tidal energy tidal current energy wave energy ocean thermalenergy salinity gradient energy
下载PDF
Modeling and optimization of a multi-carrier renewable energy system for zero-energy consumption buildings 被引量:7
19
作者 SOULEY AGBODJAN Yawovi LIU Zhi-qiang +2 位作者 WANG Jia-qiang YUE Chang LUO Zheng-yi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2330-2345,共16页
For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sec... For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability. 展开更多
关键词 multi-carrier renewable energy system constrained genetic algorithm loss of power supply probability(LPSP)method zero-energy consumption building optimal device capacity
下载PDF
Challenges for a reduced inertia power system due to the large-scale integration of renewable energy 被引量:6
20
作者 Hiromu Hamada Yoshitaka Kusayanagi +2 位作者 Masamoto Tatematsu Masayuki Watanabe Hiroshi Kikusato 《Global Energy Interconnection》 EI CAS CSCD 2022年第3期266-273,共8页
This paper reports on the status of technology development under a national project launched in 2019 to address the problem of decreased system inertia associated with the large-scale integration of renewable energy.T... This paper reports on the status of technology development under a national project launched in 2019 to address the problem of decreased system inertia associated with the large-scale integration of renewable energy.The project comprises two parts:the development of a system inertia observation technology using a continuous monitoring system to observe inertia and development of an inverter equipped with a function to provide virtual inertia as a countermeasure device.Utilizing both these efforts,the project aims to facilitate the introduction of renewable energy in the future with minimum restrictions.It was confirmed that the trend of inertia observed with the developed method was generally the same as that of the total inertia of synchronous machines observed by an electric utility.The effectiveness of the countermeasure device in reducing the frequency swing during a disturbance was confirmed through evaluation tests. 展开更多
关键词 renewable energy System inertia Fast Fourier Transform(FFT) INVERTER
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部