City resilience is a hot topic in the field of urban planning,and it is a solution and urban renewal and renovation approach for the problems of modern cities.Taking the old urban districts of Wu’an City,Hebei Provin...City resilience is a hot topic in the field of urban planning,and it is a solution and urban renewal and renovation approach for the problems of modern cities.Taking the old urban districts of Wu’an City,Hebei Province for example,this paper applied analysis methods such as space syntax and facility diversity to analyze the current problems of the study areas from the perspectives of road traffic,supporting facilities,proposed urban design renewal and renovation strategies for old urban districts,which would be significant for defining the timing sequence of urban renewal,improving the locals’ life quality and promoting resilience of old urban districts.展开更多
This note analyzes the change in water renewal time characteristics based on res- ervoir action and then establishes calculation models for the water renewal time in the Yellow River mainstream. The results indicate t...This note analyzes the change in water renewal time characteristics based on res- ervoir action and then establishes calculation models for the water renewal time in the Yellow River mainstream. The results indicate that the amount of renewable water with reservoir action can meet the annual water demand and that water flows naturally at the Lijin station near estuary. Initial storage dynamics is an important factor in water resource renewable capacity at a certain time, and rational reservoir action can promote sustainable water re- source utilization. When the initial storages in the Longyang Gorge reservoir are 9,343 and 5.343 billion m3, the water renewal times are 28 and 33.9 d, respectively. Flow stoppage appears in April and May.展开更多
The water in the air is composed of water vapor and hydrometeors,which are inseparable in the global atmosphere.Precipitation basically comes from hydrometeors instead of directly from water vapor,but hydrometeors are...The water in the air is composed of water vapor and hydrometeors,which are inseparable in the global atmosphere.Precipitation basically comes from hydrometeors instead of directly from water vapor,but hydrometeors are rarely focused on in previous studies.When assessing the maximum potential precipitation,it is necessary to quantify the total amount of hydrometeors present in the air within an area for a certain period of time.Those hydrometeors that have not participated in precipitation formation in the surface,suspending in the atmosphere to be exploited,are defined as the cloud water resource(CWR).Based on the water budget equations,we defined 16 terms(including 12 independent ones)respectively related to the hydrometeors,water vapor,and total water substance in the atmosphere,and 12 characteristic variables related to precipitation and CWR such as precipitation efficiency(PE)and renewal time(RT).Correspondingly,the CWR contributors are grouped into state terms,advection terms,and source/sink terms.Two methods are developed to quantify the CWR(details of which are presented in the companion paper)with satellite observations,atmospheric reanalysis data,precipitation products,and cloud resolving models.The CWR and related variables over North China in April and August 2017 are thus derived.The results show that CWR has the same order of magnitude as surface precipitation(Ps).The hydrometers converted from water vapor(Cvh)during the condensation process is the primary source of precipitation.It is highly correlated with Ps and contributes the most to the CWR over a large region.The state variables and advection terms of hydrometeors are two orders of magnitude lower than the corresponding terms of water vapor.The atmospheric hydrometeors can lead to higher PE than water vapor(several tens of percent versus a few percent),with a shorter RT(only a few hours versus several days).For daily CWR,the state terms are important,but for monthly and longer-time mean CWR,the source/sink terms(i.e.,cloud microphysical processes)contribute the largest;meanwhile,the advection terms contribute less for larger study areas.展开更多
文摘City resilience is a hot topic in the field of urban planning,and it is a solution and urban renewal and renovation approach for the problems of modern cities.Taking the old urban districts of Wu’an City,Hebei Province for example,this paper applied analysis methods such as space syntax and facility diversity to analyze the current problems of the study areas from the perspectives of road traffic,supporting facilities,proposed urban design renewal and renovation strategies for old urban districts,which would be significant for defining the timing sequence of urban renewal,improving the locals’ life quality and promoting resilience of old urban districts.
基金National Key Basic Research Development of China (973 Program), No.2011CB40330305
文摘This note analyzes the change in water renewal time characteristics based on res- ervoir action and then establishes calculation models for the water renewal time in the Yellow River mainstream. The results indicate that the amount of renewable water with reservoir action can meet the annual water demand and that water flows naturally at the Lijin station near estuary. Initial storage dynamics is an important factor in water resource renewable capacity at a certain time, and rational reservoir action can promote sustainable water re- source utilization. When the initial storages in the Longyang Gorge reservoir are 9,343 and 5.343 billion m3, the water renewal times are 28 and 33.9 d, respectively. Flow stoppage appears in April and May.
基金Supported by the National Key Research and Development Program of China(2016YFA0601701)National High Technology Research and Development Program of China(2012AA120902)。
文摘The water in the air is composed of water vapor and hydrometeors,which are inseparable in the global atmosphere.Precipitation basically comes from hydrometeors instead of directly from water vapor,but hydrometeors are rarely focused on in previous studies.When assessing the maximum potential precipitation,it is necessary to quantify the total amount of hydrometeors present in the air within an area for a certain period of time.Those hydrometeors that have not participated in precipitation formation in the surface,suspending in the atmosphere to be exploited,are defined as the cloud water resource(CWR).Based on the water budget equations,we defined 16 terms(including 12 independent ones)respectively related to the hydrometeors,water vapor,and total water substance in the atmosphere,and 12 characteristic variables related to precipitation and CWR such as precipitation efficiency(PE)and renewal time(RT).Correspondingly,the CWR contributors are grouped into state terms,advection terms,and source/sink terms.Two methods are developed to quantify the CWR(details of which are presented in the companion paper)with satellite observations,atmospheric reanalysis data,precipitation products,and cloud resolving models.The CWR and related variables over North China in April and August 2017 are thus derived.The results show that CWR has the same order of magnitude as surface precipitation(Ps).The hydrometers converted from water vapor(Cvh)during the condensation process is the primary source of precipitation.It is highly correlated with Ps and contributes the most to the CWR over a large region.The state variables and advection terms of hydrometeors are two orders of magnitude lower than the corresponding terms of water vapor.The atmospheric hydrometeors can lead to higher PE than water vapor(several tens of percent versus a few percent),with a shorter RT(only a few hours versus several days).For daily CWR,the state terms are important,but for monthly and longer-time mean CWR,the source/sink terms(i.e.,cloud microphysical processes)contribute the largest;meanwhile,the advection terms contribute less for larger study areas.