At the cellular level, reduced kidney perfusion in atherosclerotic renal arthery disease (ARVD), induces hypoxia, activation of the renin-angiotensin-aldosterone system (RAAS) and cytokine activation. Impaired blood f...At the cellular level, reduced kidney perfusion in atherosclerotic renal arthery disease (ARVD), induces hypoxia, activation of the renin-angiotensin-aldosterone system (RAAS) and cytokine activation. Impaired blood flow in the kidneys creates a microenvironment triggering significant cytokine production, contributing to vascular damage and endothelial disfunction. Interactions between cytokines and endothelial, glomerular, and tubular cells often result in increased vessel permeability, and fibrosis, and contribute to the development of chronic kidney disease (CKD). Molecules such as endothelins, prostaglandins, and nitric oxide play a crucial role at the molecular level. The imbalance between vasoconstrictor and vasodilator factors contributes to vascular dysfunction. Oxidative stress and inflammatory processes at the cellular level contribute to endothelial damage and structural changes in blood vessels. Mineralocorticoid receptor antagonists (MRAs) therapy in the context of ARVD holds promise in reducing fibrosis, promoting angiogenesis and enhancing overall outcomes in patients with this pathology. Recent data also indicates the antioxidative, anti-inflammatory, and antifibrotic effects of SGLT2 inhibitors. They reduce oxidative stress caused by hypoxic conditions and enhance renal perfusion, contributing to the preservation of cellular function. Studies employing Blood Oxygen Level-Dependent (BOLD) imaging have identified adaptations to reduced blood flow, volume, and glomerular filtration rate in post-stenotic kidneys that preserve oxygenation in the medulla and cortex during medical therapy. Data from the literature indicate that despite the partial recovery of renal hypoxia and restoration of blood flow after revascularization, inflammatory cytokines and injury biomarkers remain elevated, and the glomerular filtration rate (GFR) does not recover in ARVD. Restoration of vascular patency alone has failed to reverse tubulointerstitial damage and partially explains the limited clinical benefit of renal stenting. Considering these findings, BOLD MR imaging emerges as a technique capable of providing insights into the critical juncture of irreversibility in ARVD. However, further research is needed to monitor renal hypoxia following renal artery stenting and the inflammatory response over an extended period in conjunction with optimal therapy involving MRAs and SGLT2 agonists. The aim of research at the molecular level enables the identification of potential therapeutic modalities targeting specific molecular pathways, opening the door to innovative approaches in treating renovascular hypertension.展开更多
We established a stroke-prone renovascular hypertensive rat model by bilateral constriction of the renal artery with sliver loop clips. After ten weeks, middle cerebral artery occlusion was induced for 2 hours. The ra...We established a stroke-prone renovascular hypertensive rat model by bilateral constriction of the renal artery with sliver loop clips. After ten weeks, middle cerebral artery occlusion was induced for 2 hours. The rats then received electro-acupuncture at Baihui (DU 20) and Dazhui (DU 14) after onset of ischemia for 30 days. In situ hybridization study showed that electroacupuncture significantly reduced the number of neurocan mRNA-positive cells in the ischemic penumbra and hippocampal tissues of rats. Electron microscopy results demonstrated that the structure of neurons and blood vessels in the ischemic tissues were restored with electroacupuncture. Overall, these data suggest that electroacupuncture may protect neurons against ischemic reperfusion injury in stroke-prone renovascular hypertensive rats, which may be regulated by downregulation of expression of nerve inhibitory factor neurocan mRNA.展开更多
BACKGROUND: High incidence of stroke at interchange period of autumn and winter was demonstrated by epidemiological survey, and the specific causes should be further investigated. OBJECTIVE: To investigate the influ...BACKGROUND: High incidence of stroke at interchange period of autumn and winter was demonstrated by epidemiological survey, and the specific causes should be further investigated. OBJECTIVE: To investigate the influence of artificial cold exposure on the incidence of stroke in renovascular hypertensive rats (RHR), and analyze the association with blood pressure and cold-inducible RNA binding protein (CIRP) mRNA expression in brain tissue. DESIGN: A completely randomized grouping design, a randomized control animal trial. SETTINGS: Lab of Neurology, the First Affiliated Hospital of Sun Yat-sen University; Department of Chemistry, Open laboratory of Chemical Biology, Institute of Molecular Technology for Drug Discovery and Synthesis, University of Hong Kong. MATERIALS: Male SD rats (n=460), weighing 80 - 100 g were obtained from Guangdong Province Health Animal Unit. A modified RXZ-300A intelligent artificial climate cabinet (Ningbo Jiangnan Instrument Co. ,Ltd., China). METHODS: The experiment were processed in the Lab of Neurology, the First Affiliated Hospital of Sun Yat-sen University and the Open Laboratory of Chemical Biology, Institute of Molecular Technology for Drug Discovery and Synthesis, University of Hong Kong from October 2004 to November 2005. Rats (n = 400) were operated to establish 2-kidney 2-clip RHR model as described previously. The sham-operated rats (n =60) served as normotensive controls. Eight weeks later, 300 of RHR were randomly selected according to their systolic blood pressure (SBP) and divided into 3 sub-groups (n =100 per group): mild hypertensive group (SBP of 160 - 200 mm Hg), moderate hypertensive group (SBP of 200 - 220 mm Hg) and severe hypertensive group (SBP 〉 220 mm Hg). Each group was further divided into two groups (n =50) under ACE and non-ACE. Normal sham-operated SD rats (n =60), SBP 〈 140 mm Hg, were randomly divided into two groups: Sham-operated control group (n =30) under ACE and non-ACE. To establish the ACE and non-ACE treatment, rats were housed individually in artificial climate cabinet, and ACE was designed as three cycles of 12-hour light of 22℃ (7 : 00 - 19 : 00) and 12-hour dark of 4℃(19 : 00 - 7 : 00). The non-ACE group was kept at 22℃ throughout the experiment. MAIN OUTCOME MEASURES: Blood Pressure changes were measured and stroke symptom were observed; Expression of the CIRP were examined by reverse transcription-polymerase chain reaction. RESULTS: Finally 360 rats were involved in the analysis of results. ①Incidence of stroke: The incidence of stroke in 2k2c RHR was significantly higher after a three-day intermittent (12-hour) ACE (29.3%) as compared with that in non-ACE (17.3%) (P 〈 0.05). Furthermore, the severe hypertensive 2k2c RHR (BP 〉 220 mm Hg) was found to have much higher incidence of stroke (66%, 33/50) than the mild (8%, 4/50) and moderate (18%) hypertensive 2k2c RHR. ②CIRP mRNA in brain tissue: ACE treatment stimulated the mRNA expression of CIRP in non-stroke 2k2c RHR but not in stroke 2k2c RHR (P 〈 0.05). CONCLUSION: High blood pressure and low expression of CIRP are associated with ACE induced stroke.展开更多
Renovascular hypertensive rats (RHRs) were developed using the 2-kidney, 2-clip method. All RHRs at 10 weeks displayed high permeability of the cerebral surface blood vessels. Vascular casts of the RHRs showed that ...Renovascular hypertensive rats (RHRs) were developed using the 2-kidney, 2-clip method. All RHRs at 10 weeks displayed high permeability of the cerebral surface blood vessels. Vascular casts of the RHRs showed that the vascular network was sparse. The arterioles of the RHRs at 10 weeks had smaller lumen diameters, but thicker vessel walls with hyalinosis formation compared with control animals. The endothelial cell membrane appeared damaged, and microthrombus formed. After ischemia, the infarction size was larger in RHRs than in control animals. These results suggest that cerebral arterioles in RHRs underwent structural remodeling. High blood pressure may aggravate the severity of brain injury in cerebral ischemia and affect the recovery of ischemia.展开更多
BACKGROUND: Previous studies have focused on gene expression acutely following stroke onset. However, there have been a few reports of gene expression during later stages of cerebral infarction. OBJECTIVE: To determ...BACKGROUND: Previous studies have focused on gene expression acutely following stroke onset. However, there have been a few reports of gene expression during later stages of cerebral infarction. OBJECTIVE: To determine gene expression profiling in the peri-infarct brain cortex 7 days after ischemia in a rat model of cerebral infarction in renovascular hypertensive rats. DESIGN, TIME AND SETTING: An in vivo, molecular experiment was performed at the Experimental Animal Center of Sun Yat-sen University and CapitalBio, Beijing, China between February 2004 and August 2005. MATERIALS: A 70-mer oligo chip containing 5 705 rat genes was supplied by CapitalBio, Beijing, China; and the Oligo rat gene bank was provided by Qiagen, the Netherlands. METHODS: Six Sprague Dawiey rats were utilized to establish a stroke-prone renovascular hypertensive model using the two-kidney and two-clip method. The rats were subsequently randomly assigned to two groups: middle cerebral artery occlusion and sham-operation, with three rats in each group. The middle cerebral artery occlusion model was induced by intraluminal suture method. Incisions were sutured following isolation of carotid arteries in the sham-operation group. MAIN OUTCOME MEASURES: Total RNA was extracted from the peri-infarct cerebral cortex 7 days after surgery. Following fluorescent labeling, RNA was hybridized to an Oligo chip containing 5 705 genes and was then scanned. Images were collected and the differentially expressed genes (number and category) were selected by data analysis. RESULTS: A total of 174 genes were upregulated, and 23 were downregulated, in the peri-infarct cerebral cortex 7 days after ischemia. The upregulated genes were distributed among 12 functional categories, and the downregulated genes belonged to categories of transport, transcription regulators, signals, response to stress, metabolism, and cell adhesion. The expression of some cytoskeletal genes was upregulated, including VIM, A2M, B2M, ACTR3, and ARPClB. Expression of a few cell adhesion-related genes (such as NLGN1, LGALS1, LGALS3, COLIA1, COL2A1, and SPP1) and other inflammation-related genes (such as CIQB, ClS, C4, C5R1, CFH, CD14, CD164, CD47, CD48, CD53, CD8B, IFNGR, and TFITM2) were upregulated. The glutamate-receptor gene GRIK5 was downregulated, which is related to the excitatory neurotransmitter glutamate. However, expression of the inhibitory neurotransmitter GABA-related genes was bidirectional - namely, GABRA5 downregulation and GABARAP upregulation. CONCLUSION: Upregulation of many cell adhesion and inflammation related genes and downregulation of excitatory glutamate-related receptor genes revealed active gene expression during later stages of cerebral infarction, which suggested molecular mechanisms of injury or repair.展开更多
This study investigated the anti-hypertensive mechanismof rosiglitazone in renovascular hypertensive rats,and examined its relationship to oxidative stress and lipid metabolism. The renovascular hypertension was induc...This study investigated the anti-hypertensive mechanismof rosiglitazone in renovascular hypertensive rats,and examined its relationship to oxidative stress and lipid metabolism. The renovascular hypertension was induced by stenosis of the left renal artery. Four groups of rats were selected: control,induced untreated,rosiglitazone( 20 mg / kg) and captopril( 10 mg / kg). After 14 d of administration,compared with induced untreated group,rosiglitazone group reduced the renovascular hypertensive rats ' systolic blood pressure and diastolic blood pressure,and decreased total cholesterol(TCH),triglyceride(TG),angiotensin II( Ang II) and angiotensin receptor( AT1) levels( P < 0. 05). Meanwhile,rosiglitazone remarkably decreased the levels of malondialdehyde( MDA) and hydrogen peroxide( H2O2) while improved the levels of supperoxide dismutase( SOD) and reduced glutathione( GSH). These results suggested that rosiglitazone could effectively decreased the blood pressure in renovascular hypertensive rats,and this might be performed by regulating the activity of angiotensin and the lipid metabolismand improving the oxidative stress.展开更多
Eighty-one patients with suspected renovascular hypertension (RVH) were studied using 99m Tc-MAG3 renography before and after administration of 25 mg captopril (CAP). Among the 81 cases, 22 were proven by renal arteri...Eighty-one patients with suspected renovascular hypertension (RVH) were studied using 99m Tc-MAG3 renography before and after administration of 25 mg captopril (CAP). Among the 81 cases, 22 were proven by renal arteriography or DSA. The results showed that by using CAP, the sensitivity and specificity of renography in RVH diagnosis increased from 66% to 72% and from 33% to 100%, respectively. We conclude that renography is a simple, noninvasive . sensitive and specific method for screening RVH and is suitable for use in hospitals with no Y-cameras.展开更多
BACKGROUND Secondary hypertension is a relatively rare condition most commonly caused by renovascular disease due to atherosclerotic vascular disease or fibromuscular dysplasia.Although accessory renal arteries are fr...BACKGROUND Secondary hypertension is a relatively rare condition most commonly caused by renovascular disease due to atherosclerotic vascular disease or fibromuscular dysplasia.Although accessory renal arteries are frequent,to date,only six cases of secondary hypertension determined by their existence have been reported.CASE SUMMARY We describe a case of a 39-year-old female who came to the emergency department with an urgent hypertensive crisis and hypertensive encephalopathy.Despite normal renal arteries,the computed tomography angiography revealed an inferior polar artery with 50%stenosis of its diameter.Conservative treatment with amlodipine,indapamide and perindopril was adopted,leading to blood pressure control within one month.CONCLUSION To the best of our knowledge,there are controversies regarding accessory renal arteries as a potential etiology for secondary hypertension,but the seven similar cases already described,along with the current case,could reinforce the necessity of more studies concerning this subject.展开更多
文摘At the cellular level, reduced kidney perfusion in atherosclerotic renal arthery disease (ARVD), induces hypoxia, activation of the renin-angiotensin-aldosterone system (RAAS) and cytokine activation. Impaired blood flow in the kidneys creates a microenvironment triggering significant cytokine production, contributing to vascular damage and endothelial disfunction. Interactions between cytokines and endothelial, glomerular, and tubular cells often result in increased vessel permeability, and fibrosis, and contribute to the development of chronic kidney disease (CKD). Molecules such as endothelins, prostaglandins, and nitric oxide play a crucial role at the molecular level. The imbalance between vasoconstrictor and vasodilator factors contributes to vascular dysfunction. Oxidative stress and inflammatory processes at the cellular level contribute to endothelial damage and structural changes in blood vessels. Mineralocorticoid receptor antagonists (MRAs) therapy in the context of ARVD holds promise in reducing fibrosis, promoting angiogenesis and enhancing overall outcomes in patients with this pathology. Recent data also indicates the antioxidative, anti-inflammatory, and antifibrotic effects of SGLT2 inhibitors. They reduce oxidative stress caused by hypoxic conditions and enhance renal perfusion, contributing to the preservation of cellular function. Studies employing Blood Oxygen Level-Dependent (BOLD) imaging have identified adaptations to reduced blood flow, volume, and glomerular filtration rate in post-stenotic kidneys that preserve oxygenation in the medulla and cortex during medical therapy. Data from the literature indicate that despite the partial recovery of renal hypoxia and restoration of blood flow after revascularization, inflammatory cytokines and injury biomarkers remain elevated, and the glomerular filtration rate (GFR) does not recover in ARVD. Restoration of vascular patency alone has failed to reverse tubulointerstitial damage and partially explains the limited clinical benefit of renal stenting. Considering these findings, BOLD MR imaging emerges as a technique capable of providing insights into the critical juncture of irreversibility in ARVD. However, further research is needed to monitor renal hypoxia following renal artery stenting and the inflammatory response over an extended period in conjunction with optimal therapy involving MRAs and SGLT2 agonists. The aim of research at the molecular level enables the identification of potential therapeutic modalities targeting specific molecular pathways, opening the door to innovative approaches in treating renovascular hypertension.
基金Research Projects of Science and Technology Bureau of Foshan City, No. 04080131the Administration Bureau of Traditional Chinese Medicine of Guangdong Province, No. 1050006the Natural Science Foundation of Guangdong Province, No. 8152800007000001
文摘We established a stroke-prone renovascular hypertensive rat model by bilateral constriction of the renal artery with sliver loop clips. After ten weeks, middle cerebral artery occlusion was induced for 2 hours. The rats then received electro-acupuncture at Baihui (DU 20) and Dazhui (DU 14) after onset of ischemia for 30 days. In situ hybridization study showed that electroacupuncture significantly reduced the number of neurocan mRNA-positive cells in the ischemic penumbra and hippocampal tissues of rats. Electron microscopy results demonstrated that the structure of neurons and blood vessels in the ischemic tissues were restored with electroacupuncture. Overall, these data suggest that electroacupuncture may protect neurons against ischemic reperfusion injury in stroke-prone renovascular hypertensive rats, which may be regulated by downregulation of expression of nerve inhibitory factor neurocan mRNA.
基金the National Natural Science Foundation of China, No. 30471917the Hong Kong Research Grant Council,No. HKU 7198/01
文摘BACKGROUND: High incidence of stroke at interchange period of autumn and winter was demonstrated by epidemiological survey, and the specific causes should be further investigated. OBJECTIVE: To investigate the influence of artificial cold exposure on the incidence of stroke in renovascular hypertensive rats (RHR), and analyze the association with blood pressure and cold-inducible RNA binding protein (CIRP) mRNA expression in brain tissue. DESIGN: A completely randomized grouping design, a randomized control animal trial. SETTINGS: Lab of Neurology, the First Affiliated Hospital of Sun Yat-sen University; Department of Chemistry, Open laboratory of Chemical Biology, Institute of Molecular Technology for Drug Discovery and Synthesis, University of Hong Kong. MATERIALS: Male SD rats (n=460), weighing 80 - 100 g were obtained from Guangdong Province Health Animal Unit. A modified RXZ-300A intelligent artificial climate cabinet (Ningbo Jiangnan Instrument Co. ,Ltd., China). METHODS: The experiment were processed in the Lab of Neurology, the First Affiliated Hospital of Sun Yat-sen University and the Open Laboratory of Chemical Biology, Institute of Molecular Technology for Drug Discovery and Synthesis, University of Hong Kong from October 2004 to November 2005. Rats (n = 400) were operated to establish 2-kidney 2-clip RHR model as described previously. The sham-operated rats (n =60) served as normotensive controls. Eight weeks later, 300 of RHR were randomly selected according to their systolic blood pressure (SBP) and divided into 3 sub-groups (n =100 per group): mild hypertensive group (SBP of 160 - 200 mm Hg), moderate hypertensive group (SBP of 200 - 220 mm Hg) and severe hypertensive group (SBP 〉 220 mm Hg). Each group was further divided into two groups (n =50) under ACE and non-ACE. Normal sham-operated SD rats (n =60), SBP 〈 140 mm Hg, were randomly divided into two groups: Sham-operated control group (n =30) under ACE and non-ACE. To establish the ACE and non-ACE treatment, rats were housed individually in artificial climate cabinet, and ACE was designed as three cycles of 12-hour light of 22℃ (7 : 00 - 19 : 00) and 12-hour dark of 4℃(19 : 00 - 7 : 00). The non-ACE group was kept at 22℃ throughout the experiment. MAIN OUTCOME MEASURES: Blood Pressure changes were measured and stroke symptom were observed; Expression of the CIRP were examined by reverse transcription-polymerase chain reaction. RESULTS: Finally 360 rats were involved in the analysis of results. ①Incidence of stroke: The incidence of stroke in 2k2c RHR was significantly higher after a three-day intermittent (12-hour) ACE (29.3%) as compared with that in non-ACE (17.3%) (P 〈 0.05). Furthermore, the severe hypertensive 2k2c RHR (BP 〉 220 mm Hg) was found to have much higher incidence of stroke (66%, 33/50) than the mild (8%, 4/50) and moderate (18%) hypertensive 2k2c RHR. ②CIRP mRNA in brain tissue: ACE treatment stimulated the mRNA expression of CIRP in non-stroke 2k2c RHR but not in stroke 2k2c RHR (P 〈 0.05). CONCLUSION: High blood pressure and low expression of CIRP are associated with ACE induced stroke.
基金the Natural Science Foundation of Guangdong Province, No. 10151130001000001, S2011010004708the Science and Technology Projects of Guangdong Province, No. 2010Y1-C191
文摘Renovascular hypertensive rats (RHRs) were developed using the 2-kidney, 2-clip method. All RHRs at 10 weeks displayed high permeability of the cerebral surface blood vessels. Vascular casts of the RHRs showed that the vascular network was sparse. The arterioles of the RHRs at 10 weeks had smaller lumen diameters, but thicker vessel walls with hyalinosis formation compared with control animals. The endothelial cell membrane appeared damaged, and microthrombus formed. After ischemia, the infarction size was larger in RHRs than in control animals. These results suggest that cerebral arterioles in RHRs underwent structural remodeling. High blood pressure may aggravate the severity of brain injury in cerebral ischemia and affect the recovery of ischemia.
基金the Natural Science Foundation of Guangdong Province,No. 021838
文摘BACKGROUND: Previous studies have focused on gene expression acutely following stroke onset. However, there have been a few reports of gene expression during later stages of cerebral infarction. OBJECTIVE: To determine gene expression profiling in the peri-infarct brain cortex 7 days after ischemia in a rat model of cerebral infarction in renovascular hypertensive rats. DESIGN, TIME AND SETTING: An in vivo, molecular experiment was performed at the Experimental Animal Center of Sun Yat-sen University and CapitalBio, Beijing, China between February 2004 and August 2005. MATERIALS: A 70-mer oligo chip containing 5 705 rat genes was supplied by CapitalBio, Beijing, China; and the Oligo rat gene bank was provided by Qiagen, the Netherlands. METHODS: Six Sprague Dawiey rats were utilized to establish a stroke-prone renovascular hypertensive model using the two-kidney and two-clip method. The rats were subsequently randomly assigned to two groups: middle cerebral artery occlusion and sham-operation, with three rats in each group. The middle cerebral artery occlusion model was induced by intraluminal suture method. Incisions were sutured following isolation of carotid arteries in the sham-operation group. MAIN OUTCOME MEASURES: Total RNA was extracted from the peri-infarct cerebral cortex 7 days after surgery. Following fluorescent labeling, RNA was hybridized to an Oligo chip containing 5 705 genes and was then scanned. Images were collected and the differentially expressed genes (number and category) were selected by data analysis. RESULTS: A total of 174 genes were upregulated, and 23 were downregulated, in the peri-infarct cerebral cortex 7 days after ischemia. The upregulated genes were distributed among 12 functional categories, and the downregulated genes belonged to categories of transport, transcription regulators, signals, response to stress, metabolism, and cell adhesion. The expression of some cytoskeletal genes was upregulated, including VIM, A2M, B2M, ACTR3, and ARPClB. Expression of a few cell adhesion-related genes (such as NLGN1, LGALS1, LGALS3, COLIA1, COL2A1, and SPP1) and other inflammation-related genes (such as CIQB, ClS, C4, C5R1, CFH, CD14, CD164, CD47, CD48, CD53, CD8B, IFNGR, and TFITM2) were upregulated. The glutamate-receptor gene GRIK5 was downregulated, which is related to the excitatory neurotransmitter glutamate. However, expression of the inhibitory neurotransmitter GABA-related genes was bidirectional - namely, GABRA5 downregulation and GABARAP upregulation. CONCLUSION: Upregulation of many cell adhesion and inflammation related genes and downregulation of excitatory glutamate-related receptor genes revealed active gene expression during later stages of cerebral infarction, which suggested molecular mechanisms of injury or repair.
文摘This study investigated the anti-hypertensive mechanismof rosiglitazone in renovascular hypertensive rats,and examined its relationship to oxidative stress and lipid metabolism. The renovascular hypertension was induced by stenosis of the left renal artery. Four groups of rats were selected: control,induced untreated,rosiglitazone( 20 mg / kg) and captopril( 10 mg / kg). After 14 d of administration,compared with induced untreated group,rosiglitazone group reduced the renovascular hypertensive rats ' systolic blood pressure and diastolic blood pressure,and decreased total cholesterol(TCH),triglyceride(TG),angiotensin II( Ang II) and angiotensin receptor( AT1) levels( P < 0. 05). Meanwhile,rosiglitazone remarkably decreased the levels of malondialdehyde( MDA) and hydrogen peroxide( H2O2) while improved the levels of supperoxide dismutase( SOD) and reduced glutathione( GSH). These results suggested that rosiglitazone could effectively decreased the blood pressure in renovascular hypertensive rats,and this might be performed by regulating the activity of angiotensin and the lipid metabolismand improving the oxidative stress.
文摘Eighty-one patients with suspected renovascular hypertension (RVH) were studied using 99m Tc-MAG3 renography before and after administration of 25 mg captopril (CAP). Among the 81 cases, 22 were proven by renal arteriography or DSA. The results showed that by using CAP, the sensitivity and specificity of renography in RVH diagnosis increased from 66% to 72% and from 33% to 100%, respectively. We conclude that renography is a simple, noninvasive . sensitive and specific method for screening RVH and is suitable for use in hospitals with no Y-cameras.
文摘BACKGROUND Secondary hypertension is a relatively rare condition most commonly caused by renovascular disease due to atherosclerotic vascular disease or fibromuscular dysplasia.Although accessory renal arteries are frequent,to date,only six cases of secondary hypertension determined by their existence have been reported.CASE SUMMARY We describe a case of a 39-year-old female who came to the emergency department with an urgent hypertensive crisis and hypertensive encephalopathy.Despite normal renal arteries,the computed tomography angiography revealed an inferior polar artery with 50%stenosis of its diameter.Conservative treatment with amlodipine,indapamide and perindopril was adopted,leading to blood pressure control within one month.CONCLUSION To the best of our knowledge,there are controversies regarding accessory renal arteries as a potential etiology for secondary hypertension,but the seven similar cases already described,along with the current case,could reinforce the necessity of more studies concerning this subject.