Imperialist Robert Baden-Powell’s Boy Scouts Association started in the Gold Coast Colony during the First World War and schooled boys for nationality during the 1920s.This paper uses archival documents to discuss ho...Imperialist Robert Baden-Powell’s Boy Scouts Association started in the Gold Coast Colony during the First World War and schooled boys for nationality during the 1920s.This paper uses archival documents to discuss how Chief Scout Governor Gordon Guggisberg,who was brigadier general during the First World War,reorganized the Boy Scouts Association in the Northern Province of the Northern Territories Protectorate.The scout officers at the Local Boy Scouts Associations had the power to fashion desire but were not supposed to have consequences on political power.As government officers and scout officers they had warrants to work at the government schools at Gambaga,Wa,and Lawra to attain money locally for kits to instruct and invent the identity,customs and nationalist categories of schoolboys performing the British Empire.展开更多
A series of CH2, NH, O, and Se substituted 2,1,3-benzothiadiazote derivatives have been designed and investigated computationally to elucidate their potential as organic light-emitting materials for organic light-emit...A series of CH2, NH, O, and Se substituted 2,1,3-benzothiadiazote derivatives have been designed and investigated computationally to elucidate their potential as organic light-emitting materials for organic light-emitting diodes. Both ab initio Hartree-Foek and hybrid density functional methods are used. It is found that S by CH2, NH, O, and Se makes it possible transport properties of the pristine molecule adjusting the central aromatic ring by replacing to fine-tune the electronic, optical, and charge展开更多
A new leader in a department will face a lot of problems when reorganizing the department. After analyzing an informal speech made by the new leader, it is found that the speech is coherent and the coherence of this s...A new leader in a department will face a lot of problems when reorganizing the department. After analyzing an informal speech made by the new leader, it is found that the speech is coherent and the coherence of this speech is achieved by using many cohesive devices and register. For the successful expression of his ideas, the new leader built a cooperative other than command-and-control relationship with his subordinates, which will make the great reorganization in the department successfully done.展开更多
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patien...Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor func- tion test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action perfor- mance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH- 12002238).展开更多
According to the nonequilibrium solvation theory studies, a constrained equilibrium principle is introduced and applied to the derivations of the nonequilibrium solvation energy, and a reasonable expression of the spe...According to the nonequilibrium solvation theory studies, a constrained equilibrium principle is introduced and applied to the derivations of the nonequilibrium solvation energy, and a reasonable expression of the spectral shift of the electronic absorption spectra is deduced. Furthermore, the lowest transition of p-nitroaniline (pNA) in water is investigated by time-dependent density functional theory method. In addition, the details of excited state properties of pNA are discussed. Using our novel expression of the spectral shift, the value of -0.99 eV is obtained for π→π^* transition in water, which is in good agreement with the available experimental result of -0.98 eV.展开更多
Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the ex...Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.展开更多
Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on syn...Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57 BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant(northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.展开更多
Peri-lesional reorganization is one of the motor recovery mechanisms following stroke. A 23-year-old female who presented with complete paralysis of the right extremities at the onset of infarct in the left middle cer...Peri-lesional reorganization is one of the motor recovery mechanisms following stroke. A 23-year-old female who presented with complete paralysis of the right extremities at the onset of infarct in the left middle cerebral artery territory was included. She slowly recovered some function, and could extend the affected knee with resistance after 9 months. Diffusion tensor tractography, functional MRI, and transcranial magnetic stimulation testing were performed at 7 years after onset. Results showed that diffusion tensor tractography of the affected (left) hemisphere passed through the medial corona radiata at, or around, the wall of the lateral ventricle. The contralateral primary sensorimotor cortex was activated during affected knee movements. The motor-evoked potential, which was obtained from the affected leg, exhibited corticospinal tract characteristics. Results indicated that motor function of the affected leg recovered via the corticospinal tract, which descended through the corona radiata medial to the infarct. The motor function of the affected leg was reorganized to the medial corona radiata following infarct to the middle cerebral artery territory.展开更多
BACKGROUND:Synapses undergo high levels of plasticity within the nervous system, and cerebral ischemia induces synaptic plasticity changes.OBJECTIVE:To demonstrate the effects of electroacupuncture on ultrastructura...BACKGROUND:Synapses undergo high levels of plasticity within the nervous system, and cerebral ischemia induces synaptic plasticity changes.OBJECTIVE:To demonstrate the effects of electroacupuncture on ultrastructural synaptic changes in the focal cerebral ischemia marginal zone in rats using quantitative analysis of stereological measurement.DESIGN, TIME AND SETTING:A randomized, controlled, animal experiment was performed at the Experimental Animal Center and Laboratory of Electron Microscopy, Guangzhou University of Traditional Chinese Medicine from January 2008 to January 2009.MATERIALS:The G-6805 electric acupuncture apparatus was provided by Shanghai Huayi Instrument Factory, China.METHODS:A total of 90 male, Wistar rats were randomly assigned to sham-surgery, model, and electroacupuncture groups, with 30 animals in each group. Each group was subdivided into 1 hour, as well as 1, 3, 7, and 21 days post-surgery groups, with six animals assigned to each time point. Heat coagulation-induced occlusion of the middle cerebral artery was performed to establish a model of focal cerebral ischemia. Electroacupuncture was applied immediately following surgery to the electroacupuncture group [4/20 Hz, 2.0-3.0 V, 1-3 mA, to Baihui (GV 20) and Dazhui (GV 14)] for 30 minutes. Treatment was performed once a day, and experimental animals were sacrificed, at 1 hour, as well as 1, 3, 7 and 21 days post-surgery.MAIN OUTCOME MEASURES:At different time points after intervention, changes in synaptic ultrastructure, such as postsynaptic density thickness, synaptic cleft width, and synaptic interface curvature, were observed in the focal cerebral ischemia marginal zone in rats through the use of transmission electronic microscopy.RESULTS:Broken synapses were observed following cerebral ischemia, and the number of synapses was significantly decreased. Compared to the model group, synaptic ultrastructure was significantly improved in the electroacupuncture group. Compared to the sham-surgery group, postsynaptic density thickness was significantly decreased, as were synaptic cleft width and synaptic interface curvature in the electroacupuncture and model groups. However, compared to the model group, postsynaptic density thickness was significantly increased in the electroacupuncture group at the same time point post-surgery (P 〈 0.05 or P 〈 0.01). In addition, synaptic cleft width and synaptic interface curvature were significantly increased with the passage of time (P〈 0.05 or P〈 0.01).CONCLUSION:Electroacupuncture significantly ameliorated structural synapse lesion during the early stage of cerebral ischemic injury, promoted repair of synaptic structure, improved structural parameters of synapses, and increased synaptic structural plasticity, which suggested that the therapeutic effect of electroacupuncture was related to synaptic reorganization.展开更多
Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may hel...Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.展开更多
Objective To study the activation changes of the brain in patients with amyotrophic lateral sclerosis (ALS) while executing sequential finger tapping movement using the method of blood oxygenation level dependent (...Objective To study the activation changes of the brain in patients with amyotrophic lateral sclerosis (ALS) while executing sequential finger tapping movement using the method of blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (tMRI). Methods Fifteen patients with definite or probable ALS and fifteen age and gender matched normal controls were enrolled. MRI was performed on a 3.0 Tesla scanner with standard headcoiL The functional images were acquired using a gradient echo single shot echo planar imaging (EPI) sequence. All patients and normal subjects executed sequential finger tapping movement at the frequency of 1-2 Hz during a block-design motor task. Structural MRI was acquired using a three-dimensional fast spoiled gradient echo (3D-FSPGR) sequence. The tMRI data were analyzed by statistical parametric mapping (SPM). Results Bilateral primary sensorimotor cortex ( PSM), bilateral premotor area ( PA), bilateral supplementary motor area (SMA), bilateral parietal region ( PAR), contralateral inferior lateral premotor area ( ILPA), and ipsilateral cerebellum showed activation in both ALS patients and normal controls when executing the same motor task. The activation areas in bilateral PSM, bilateral PA, bilateral SMA, and ipsilateral cerebellum were significantly larger in ALS patients than those in normal controls ( P 〈 0.05 ). Extra activation areas including ipsilateral ILPA, bilateral posterior limb of internal capsule, and contralateral cerebellum were only detected in ALS patients. Conclusions Similar activation areas are activated in ALS patients and normal subjects while executing the same motor task. The increased activation areas in ALS patients may represent neural reorganization, while the extra activation areas in ALS patients may indicate functional compensation.展开更多
Perilesional reorganization is an important recovery mechanism for stroke patients because it yields good motor outcomes. However, perilesional reorganization remains poorly understood. The scientific basis for stroke...Perilesional reorganization is an important recovery mechanism for stroke patients because it yields good motor outcomes. However, perilesional reorganization remains poorly understood. The scientific basis for stroke rehabilitation can be established when detailed mechanisms of recovery are clarified. In addition, studies at the subcortical level remain in the early stages. Therefore, the present study suggested that additional investigations should focus on perilesional reorganization at the subcortical level, identifying the critical period for this mechanism and determining treatment strategies and modalities to facilitate development. The present study reviews literature focused on perilesional reorganization in stroke patients with regard to demonstration, clinical characteristics, and rehabilitative aspects, as well as previous studies of perilesional reorganization at cortical and subcortical levels.展开更多
This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation techn...This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation technique and the linear unbiased estimation method. The estimation gains are developed by solving a set of Riccati equations, and a stability result about the state estimation is shown. Finally, an example is given to illustrate the efficiency of the receding horizon state estimation.展开更多
The Indus River flows through Ladakh, one of the driest and coldest places on earth, in a tectonically active domain. Fluvial, glaciofluvial, lacustrine and debris dominated sequences represent the Late Quaternary sed...The Indus River flows through Ladakh, one of the driest and coldest places on earth, in a tectonically active domain. Fluvial, glaciofluvial, lacustrine and debris dominated sequences represent the Late Quaternary sedimentary record along the river course. Karakoram Fault, a major crustal scaled feature reported to be active during the Quaternary, is associated with the Indus River drainage. Linkages between a major, active fault and deposits formed during the activity period of the fault are explored using heavy mineral deduced provenance and Optically Stimulated Luminescence(OSL) chronology.Five deposits in a ~200 km long stretch of the Indus River have been examined for a ~80 ka period to decipher the climate linked aggradation history. Damming of the Indus River at ~79 ka and existence of the Spituk Lake for >30 ka is demonstrated. Using geology of the provenance in relation to the mineralogical attributes of the Quaternary deposits, the major drainage reorganization when the connection of the Tangtse Valley to the Indus was blocked, is inferred at ~73 ka. It is supported by the geologicalgeomorphological evidence. The study demonstrates the application of provenance linked mineralogy in terrestrial aggradation in a tectonically active region.展开更多
Acute central nervous system injuries are among the most common causes of disability worldwide,with widespread social and economic implications.Motor tract injury accounts for the majority of this disability;therefore...Acute central nervous system injuries are among the most common causes of disability worldwide,with widespread social and economic implications.Motor tract injury accounts for the majority of this disability;therefore,there is impetus to understand mechanisms underlying the pathophysiology of injury and subsequent reorganization of the motor tract that may lead to recovery.After acute central nervous system injury,there are changes in the microenvironment and structure of the motor tract.For example,ischemic stroke involves decreased local blood flow and tissue death from lack of oxygen and nutrients.Traumatic injury,in contrast,causes stretching and shearing injury to microstructures,including myelinated axons and their surrounding vessels.Both involve blood-brain barrier dysfunction,which is an important initial event.After acute central nervous system injury,motor tract reorganization occurs in the form of cortical remapping in the gray matter and axonal regeneration and rewiring in the white matter.Cortical remapping involves one cortical region taking on the role of another.cAMP-response-element binding protein is a key transcription factor that can enhance plasticity in the peri-infarct cortex.Axonal regeneration and rewiring depend on complex cell-cell interactions between axons,oligodendrocytes,and other cells.The RhoA/Rho-associated coiled-coil containing kinase signaling pathway plays a central role in axon growth/regeneration through interactions with myelin-derived axonal growth inhibitors and regulation of actin cytoskeletal dynamics.Oligodendrocytes and their precursors play a role in myelination,and neurons are involved through their voltage-gated calcium channels.Understanding the pathophysiology of injury and the biology of motor tract reorganization may allow the development of therapies to enhance recovery after acute central nervous system injury.These include targeted rehabilitation,novel pharmacotherapies,such as growth factors and axonal growth inhibitor blockade,and the implementation of neurotechnologies,such as central nervous system stimulators and robotics.The translation of these advances depends on careful alignment of preclinical studies and human clinical trials.As experimental data mount,the future is one of optimism.展开更多
Carpal tunnel syndrome is the most common compressive neuropathy,presenting with sensorimotor dysfunction.In carpal tunnel syndrome patients,irregular afferent signals on functional magnetic resonance imaging are asso...Carpal tunnel syndrome is the most common compressive neuropathy,presenting with sensorimotor dysfunction.In carpal tunnel syndrome patients,irregular afferent signals on functional magnetic resonance imaging are associated with changes in neural plasticity during peripheral nerve injury.However,it is difficult to obtain multi-point neuroimaging data of the brain in the clinic.In the present study,a rat model of median nerve compression was established by median nerve ligation,i.e.,carpal tunnel syndrome model.Sensory cortex remodeling was determined by functional magnetic resonance imaging between normal rats and carpal tunnel syndrome models at 2 weeks and 2 months after operation.Stimulation of bilateral paws by electricity for 30 seconds,alternating with 30 seconds of rest period(repeatedly 3 times),resulted in activation of the contralateral sensorimotor cortex in normal rats.When carpal tunnel syndrome rats received this stimulation,the contralateral cerebral hemisphere was markedly activated at 2 weeks after operation,including the primary motor cortex,cerebellum,and thalamus.Moreover,this activation was not visible at 2 months after operation.These findings suggest that significant remodeling of the cerebral cortex appears at 2 weeks and 2 months after median nerve compression.展开更多
Many studies have attempted to elucidate the motor recovery mechanism of stroke, but the majority of these studies focus on cerebral infarct and relatively little is known about the motor recovery mechanism of intrace...Many studies have attempted to elucidate the motor recovery mechanism of stroke, but the majority of these studies focus on cerebral infarct and relatively little is known about the motor recovery mechanism of intracerebral hemorrhage. In this study, we report on a patient with intracerebral hemorrhage who displayed a change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex on diffusion tensor imaging. An 86-year-old woman presented with complete paralysis of the right extremities following spontaneous intracerebral hemorrhage in the left frontoparietal cortex. The patient showed motor recovery, to the extent of being able to extend affected fingers against gravity and to walk independently on even ground at 5 months after onset. Diffusion tensor imaging showed that the left corticospinal tract originated from the premotor cortex at 1 month after intracerebral hemorrhage and from the left primary motor cortex and premotor cortex at 5 months after intracerebral hemorrhage. The change of injured corticospinal tract originating from the premotor cortex to the primary motor cortex suggests motor recovery of intracerebral hemorrhage.展开更多
Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstru...Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.展开更多
Although molybdenum disulfide (MoS_(2))-based materials are generally known as active electrocatalysts for the hydrogen evolution reaction (HER), the inert performance for the oxygen evolution reaction (OER) seriously...Although molybdenum disulfide (MoS_(2))-based materials are generally known as active electrocatalysts for the hydrogen evolution reaction (HER), the inert performance for the oxygen evolution reaction (OER) seriously limits their wide applications in alkaline electrolyzers due to there exists too strong metal-sulfur (M−S) bond in MoS_(2). Herein, by means of surface reorganization engineering of bimetal Al, Co-doped MoS_(2) (devoted as AlCo_(3)-MoS_(2)) through in situ substituting partial oxidation, we successfully significantly activate the OER activity of MoS_(2), which affords a considerably low overpotential of 323 mV at −30 mA cm^(−2), far lower than those of MoS_(2), Al-MoS_(2) and Co-MoS_(2) catalysts. Essentially, the AlCo_(3)-MoS_(2) substrate produces lots of M−O (M=Al, Co and Mo) species with oxygen vacancies, which trigger the surface self-reconstruction of pre-catalysts and simultaneously boost the electrocatalytic OER activity. Moreover, benefiting from the moderate M−O species formed on the surface, the redistribution of surface electron states is induced, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and awakening the OER activity of MoS_(2).展开更多
Hemiplegia after stroke has become a major cause of the world's high disabilities,and it is vital to enhance our understanding of post-stroke neuroplasticity to develop e±cient rehabilitation programs.This st...Hemiplegia after stroke has become a major cause of the world's high disabilities,and it is vital to enhance our understanding of post-stroke neuroplasticity to develop e±cient rehabilitation programs.This study aimed to explore the brain activation and network reorganization of the motor cortex(MC)with functional near-infrared spectroscopy(fNIRS).The MC hemodynamic signals were gained from 22 stroke patients and 14 healthy subjects during a shoulder-touching task with the right hand.The MC activation pattern and network attributes analyzed with the graph theory were compared between the two groups.The results revealed that healthy controls presented dominant activation in the left MC while stroke patients exhibited dominant activation in the bilateral hemispheres MC.The MC networks for the two groups had small-world properties.Compared with healthy controls,patients had higher transitivity and lower global e±ciency(GE),mean connectivity,and long connections(LCs)in the left MC.In addition,both MC activation and network attributes were correlated with patient's upper limb motor function.The results showed the stronger compensation of the unaffected motor area,the better recovery of the upper limb motor function for patients.Moreover,the MC network possessed high clustering and relatively sparse inter-regional connections during recovery for patients.Our results promote the understanding of MC reorganization during recovery and indicate that MC activation and network could provide clinical assessment signi¯cance in stroke patients.Given the advantages of fNIRS,it shows great application potential in the assessment and rehabilitation of motor function after stroke.展开更多
文摘Imperialist Robert Baden-Powell’s Boy Scouts Association started in the Gold Coast Colony during the First World War and schooled boys for nationality during the 1920s.This paper uses archival documents to discuss how Chief Scout Governor Gordon Guggisberg,who was brigadier general during the First World War,reorganized the Boy Scouts Association in the Northern Province of the Northern Territories Protectorate.The scout officers at the Local Boy Scouts Associations had the power to fashion desire but were not supposed to have consequences on political power.As government officers and scout officers they had warrants to work at the government schools at Gambaga,Wa,and Lawra to attain money locally for kits to instruct and invent the identity,customs and nationalist categories of schoolboys performing the British Empire.
文摘A series of CH2, NH, O, and Se substituted 2,1,3-benzothiadiazote derivatives have been designed and investigated computationally to elucidate their potential as organic light-emitting materials for organic light-emitting diodes. Both ab initio Hartree-Foek and hybrid density functional methods are used. It is found that S by CH2, NH, O, and Se makes it possible transport properties of the pristine molecule adjusting the central aromatic ring by replacing to fine-tune the electronic, optical, and charge
文摘A new leader in a department will face a lot of problems when reorganizing the department. After analyzing an informal speech made by the new leader, it is found that the speech is coherent and the coherence of this speech is achieved by using many cohesive devices and register. For the successful expression of his ideas, the new leader built a cooperative other than command-and-control relationship with his subordinates, which will make the great reorganization in the department successfully done.
基金supported by the Sub-Project under National "Twelfth Five-Year" Plan for Science&Technology Support Project in China,No.2011BAI08B11the Research Project of China Rehabilitation Research Center,No.2014-3
文摘Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor func- tion test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action perfor- mance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH- 12002238).
基金ACKNOWLEDGMENTS This work was supported Science Foundation of China by the National Natural (No.91016002).
文摘According to the nonequilibrium solvation theory studies, a constrained equilibrium principle is introduced and applied to the derivations of the nonequilibrium solvation energy, and a reasonable expression of the spectral shift of the electronic absorption spectra is deduced. Furthermore, the lowest transition of p-nitroaniline (pNA) in water is investigated by time-dependent density functional theory method. In addition, the details of excited state properties of pNA are discussed. Using our novel expression of the spectral shift, the value of -0.99 eV is obtained for π→π^* transition in water, which is in good agreement with the available experimental result of -0.98 eV.
基金several colleague therapists of the Rehabilitation Medicine Department of the Affiliated Hospital of Qingdao University of China for their support and selfless help
文摘Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.
基金supported by the National Natural Science Foundation of China,No.81672242(to YW)the Key Construction Projects of Shanghai Health and Family Planning on Weak Discipline,China,No.2015ZB0401(to YW)
文摘Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57 BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant(northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.
基金the Korea Research Foundation funded by the Korean Government, No.KRF-2008-314-E00173
文摘Peri-lesional reorganization is one of the motor recovery mechanisms following stroke. A 23-year-old female who presented with complete paralysis of the right extremities at the onset of infarct in the left middle cerebral artery territory was included. She slowly recovered some function, and could extend the affected knee with resistance after 9 months. Diffusion tensor tractography, functional MRI, and transcranial magnetic stimulation testing were performed at 7 years after onset. Results showed that diffusion tensor tractography of the affected (left) hemisphere passed through the medial corona radiata at, or around, the wall of the lateral ventricle. The contralateral primary sensorimotor cortex was activated during affected knee movements. The motor-evoked potential, which was obtained from the affected leg, exhibited corticospinal tract characteristics. Results indicated that motor function of the affected leg recovered via the corticospinal tract, which descended through the corona radiata medial to the infarct. The motor function of the affected leg was reorganized to the medial corona radiata following infarct to the middle cerebral artery territory.
基金Supported by the National Basic Research Program of China (973 program),No.2010CB530500the National Natural Science Foundation of China,No. 30572420Program for New Century Excellent Talents in University,Ministry of Educa-tion of China,No. NCET-04-0831
文摘BACKGROUND:Synapses undergo high levels of plasticity within the nervous system, and cerebral ischemia induces synaptic plasticity changes.OBJECTIVE:To demonstrate the effects of electroacupuncture on ultrastructural synaptic changes in the focal cerebral ischemia marginal zone in rats using quantitative analysis of stereological measurement.DESIGN, TIME AND SETTING:A randomized, controlled, animal experiment was performed at the Experimental Animal Center and Laboratory of Electron Microscopy, Guangzhou University of Traditional Chinese Medicine from January 2008 to January 2009.MATERIALS:The G-6805 electric acupuncture apparatus was provided by Shanghai Huayi Instrument Factory, China.METHODS:A total of 90 male, Wistar rats were randomly assigned to sham-surgery, model, and electroacupuncture groups, with 30 animals in each group. Each group was subdivided into 1 hour, as well as 1, 3, 7, and 21 days post-surgery groups, with six animals assigned to each time point. Heat coagulation-induced occlusion of the middle cerebral artery was performed to establish a model of focal cerebral ischemia. Electroacupuncture was applied immediately following surgery to the electroacupuncture group [4/20 Hz, 2.0-3.0 V, 1-3 mA, to Baihui (GV 20) and Dazhui (GV 14)] for 30 minutes. Treatment was performed once a day, and experimental animals were sacrificed, at 1 hour, as well as 1, 3, 7 and 21 days post-surgery.MAIN OUTCOME MEASURES:At different time points after intervention, changes in synaptic ultrastructure, such as postsynaptic density thickness, synaptic cleft width, and synaptic interface curvature, were observed in the focal cerebral ischemia marginal zone in rats through the use of transmission electronic microscopy.RESULTS:Broken synapses were observed following cerebral ischemia, and the number of synapses was significantly decreased. Compared to the model group, synaptic ultrastructure was significantly improved in the electroacupuncture group. Compared to the sham-surgery group, postsynaptic density thickness was significantly decreased, as were synaptic cleft width and synaptic interface curvature in the electroacupuncture and model groups. However, compared to the model group, postsynaptic density thickness was significantly increased in the electroacupuncture group at the same time point post-surgery (P 〈 0.05 or P 〈 0.01). In addition, synaptic cleft width and synaptic interface curvature were significantly increased with the passage of time (P〈 0.05 or P〈 0.01).CONCLUSION:Electroacupuncture significantly ameliorated structural synapse lesion during the early stage of cerebral ischemic injury, promoted repair of synaptic structure, improved structural parameters of synapses, and increased synaptic structural plasticity, which suggested that the therapeutic effect of electroacupuncture was related to synaptic reorganization.
文摘Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.
基金Supported by National Natural Sciences Foundation of China(30470512)
文摘Objective To study the activation changes of the brain in patients with amyotrophic lateral sclerosis (ALS) while executing sequential finger tapping movement using the method of blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (tMRI). Methods Fifteen patients with definite or probable ALS and fifteen age and gender matched normal controls were enrolled. MRI was performed on a 3.0 Tesla scanner with standard headcoiL The functional images were acquired using a gradient echo single shot echo planar imaging (EPI) sequence. All patients and normal subjects executed sequential finger tapping movement at the frequency of 1-2 Hz during a block-design motor task. Structural MRI was acquired using a three-dimensional fast spoiled gradient echo (3D-FSPGR) sequence. The tMRI data were analyzed by statistical parametric mapping (SPM). Results Bilateral primary sensorimotor cortex ( PSM), bilateral premotor area ( PA), bilateral supplementary motor area (SMA), bilateral parietal region ( PAR), contralateral inferior lateral premotor area ( ILPA), and ipsilateral cerebellum showed activation in both ALS patients and normal controls when executing the same motor task. The activation areas in bilateral PSM, bilateral PA, bilateral SMA, and ipsilateral cerebellum were significantly larger in ALS patients than those in normal controls ( P 〈 0.05 ). Extra activation areas including ipsilateral ILPA, bilateral posterior limb of internal capsule, and contralateral cerebellum were only detected in ALS patients. Conclusions Similar activation areas are activated in ALS patients and normal subjects while executing the same motor task. The increased activation areas in ALS patients may represent neural reorganization, while the extra activation areas in ALS patients may indicate functional compensation.
基金the National Research Foundation of Korea Grant funded by the Korean Government, No. KRF-2008-314-E00173
文摘Perilesional reorganization is an important recovery mechanism for stroke patients because it yields good motor outcomes. However, perilesional reorganization remains poorly understood. The scientific basis for stroke rehabilitation can be established when detailed mechanisms of recovery are clarified. In addition, studies at the subcortical level remain in the early stages. Therefore, the present study suggested that additional investigations should focus on perilesional reorganization at the subcortical level, identifying the critical period for this mechanism and determining treatment strategies and modalities to facilitate development. The present study reviews literature focused on perilesional reorganization in stroke patients with regard to demonstration, clinical characteristics, and rehabilitative aspects, as well as previous studies of perilesional reorganization at cortical and subcortical levels.
基金supported by National Natural Science Foundation of China(61473134,61573220)the Postdoctoral Science Foundation of China(2017M622231)
文摘This paper investigates the receding horizon state estimation for the linear discrete-time system with multi-channel observation delays. The receding horizon estimation is designed by the reorganized observation technique and the linear unbiased estimation method. The estimation gains are developed by solving a set of Riccati equations, and a stability result about the state estimation is shown. Finally, an example is given to illustrate the efficiency of the receding horizon state estimation.
基金Council of Scientific & Industrial Research (CSIR) (Sr. No1121020574 and Ref. No: 19-12/2010(i)EU-IV) funded a fellowship to RL Ministry of Earth Sciences (MoES) has supported the project(MoES/PAMC/H&C/51/2013-PC-II)
文摘The Indus River flows through Ladakh, one of the driest and coldest places on earth, in a tectonically active domain. Fluvial, glaciofluvial, lacustrine and debris dominated sequences represent the Late Quaternary sedimentary record along the river course. Karakoram Fault, a major crustal scaled feature reported to be active during the Quaternary, is associated with the Indus River drainage. Linkages between a major, active fault and deposits formed during the activity period of the fault are explored using heavy mineral deduced provenance and Optically Stimulated Luminescence(OSL) chronology.Five deposits in a ~200 km long stretch of the Indus River have been examined for a ~80 ka period to decipher the climate linked aggradation history. Damming of the Indus River at ~79 ka and existence of the Spituk Lake for >30 ka is demonstrated. Using geology of the provenance in relation to the mineralogical attributes of the Quaternary deposits, the major drainage reorganization when the connection of the Tangtse Valley to the Indus was blocked, is inferred at ~73 ka. It is supported by the geologicalgeomorphological evidence. The study demonstrates the application of provenance linked mineralogy in terrestrial aggradation in a tectonically active region.
基金supported in part by JSPS“KAKENHI”Grant-in-Aid for Early-Career Scientists,Grant No.18K16566(to HT)Research Abroad from the Japan Brain Foundation(to HT)+2 种基金Mochida Memorial Foundation for Medical and Pharmaceutical Research of Japan(to HT)the Rotary Foundation Global Scholarship Grants,Grant Nos.GG1759314,GG1876795)(to HT)the National Institute of Neurological Disorders and Stroke of USA,No.R25 NS065743(to RWR).
文摘Acute central nervous system injuries are among the most common causes of disability worldwide,with widespread social and economic implications.Motor tract injury accounts for the majority of this disability;therefore,there is impetus to understand mechanisms underlying the pathophysiology of injury and subsequent reorganization of the motor tract that may lead to recovery.After acute central nervous system injury,there are changes in the microenvironment and structure of the motor tract.For example,ischemic stroke involves decreased local blood flow and tissue death from lack of oxygen and nutrients.Traumatic injury,in contrast,causes stretching and shearing injury to microstructures,including myelinated axons and their surrounding vessels.Both involve blood-brain barrier dysfunction,which is an important initial event.After acute central nervous system injury,motor tract reorganization occurs in the form of cortical remapping in the gray matter and axonal regeneration and rewiring in the white matter.Cortical remapping involves one cortical region taking on the role of another.cAMP-response-element binding protein is a key transcription factor that can enhance plasticity in the peri-infarct cortex.Axonal regeneration and rewiring depend on complex cell-cell interactions between axons,oligodendrocytes,and other cells.The RhoA/Rho-associated coiled-coil containing kinase signaling pathway plays a central role in axon growth/regeneration through interactions with myelin-derived axonal growth inhibitors and regulation of actin cytoskeletal dynamics.Oligodendrocytes and their precursors play a role in myelination,and neurons are involved through their voltage-gated calcium channels.Understanding the pathophysiology of injury and the biology of motor tract reorganization may allow the development of therapies to enhance recovery after acute central nervous system injury.These include targeted rehabilitation,novel pharmacotherapies,such as growth factors and axonal growth inhibitor blockade,and the implementation of neurotechnologies,such as central nervous system stimulators and robotics.The translation of these advances depends on careful alignment of preclinical studies and human clinical trials.As experimental data mount,the future is one of optimism.
基金supported by the National Natural Science Foundation of China,No.81371965,81672144a grant from the Shanghai Pujiang Program of China,No.16PJD035
文摘Carpal tunnel syndrome is the most common compressive neuropathy,presenting with sensorimotor dysfunction.In carpal tunnel syndrome patients,irregular afferent signals on functional magnetic resonance imaging are associated with changes in neural plasticity during peripheral nerve injury.However,it is difficult to obtain multi-point neuroimaging data of the brain in the clinic.In the present study,a rat model of median nerve compression was established by median nerve ligation,i.e.,carpal tunnel syndrome model.Sensory cortex remodeling was determined by functional magnetic resonance imaging between normal rats and carpal tunnel syndrome models at 2 weeks and 2 months after operation.Stimulation of bilateral paws by electricity for 30 seconds,alternating with 30 seconds of rest period(repeatedly 3 times),resulted in activation of the contralateral sensorimotor cortex in normal rats.When carpal tunnel syndrome rats received this stimulation,the contralateral cerebral hemisphere was markedly activated at 2 weeks after operation,including the primary motor cortex,cerebellum,and thalamus.Moreover,this activation was not visible at 2 months after operation.These findings suggest that significant remodeling of the cerebral cortex appears at 2 weeks and 2 months after median nerve compression.
基金supported by Daegu Innopolis R&BD Project by the Korea Institute for Advancement of Technology
文摘Many studies have attempted to elucidate the motor recovery mechanism of stroke, but the majority of these studies focus on cerebral infarct and relatively little is known about the motor recovery mechanism of intracerebral hemorrhage. In this study, we report on a patient with intracerebral hemorrhage who displayed a change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex on diffusion tensor imaging. An 86-year-old woman presented with complete paralysis of the right extremities following spontaneous intracerebral hemorrhage in the left frontoparietal cortex. The patient showed motor recovery, to the extent of being able to extend affected fingers against gravity and to walk independently on even ground at 5 months after onset. Diffusion tensor imaging showed that the left corticospinal tract originated from the premotor cortex at 1 month after intracerebral hemorrhage and from the left primary motor cortex and premotor cortex at 5 months after intracerebral hemorrhage. The change of injured corticospinal tract originating from the premotor cortex to the primary motor cortex suggests motor recovery of intracerebral hemorrhage.
基金supported by the JSPSKAKENHI Grant-in-Aid for Scientific Research(B),Grant Numbers24700572 and 30614276
文摘Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.
基金This work was supported by the NSFC(21501096,22075223)Natural Science Foundation of Jiangsu(BK20150086,BK20201120)+1 种基金the Foundation of the Jiangsu Education Committee(15KJB150020)the Six Talent Peaks Project in Jiangsu Province(JY-087)and the Innovation Project of Jiangsu Province.
文摘Although molybdenum disulfide (MoS_(2))-based materials are generally known as active electrocatalysts for the hydrogen evolution reaction (HER), the inert performance for the oxygen evolution reaction (OER) seriously limits their wide applications in alkaline electrolyzers due to there exists too strong metal-sulfur (M−S) bond in MoS_(2). Herein, by means of surface reorganization engineering of bimetal Al, Co-doped MoS_(2) (devoted as AlCo_(3)-MoS_(2)) through in situ substituting partial oxidation, we successfully significantly activate the OER activity of MoS_(2), which affords a considerably low overpotential of 323 mV at −30 mA cm^(−2), far lower than those of MoS_(2), Al-MoS_(2) and Co-MoS_(2) catalysts. Essentially, the AlCo_(3)-MoS_(2) substrate produces lots of M−O (M=Al, Co and Mo) species with oxygen vacancies, which trigger the surface self-reconstruction of pre-catalysts and simultaneously boost the electrocatalytic OER activity. Moreover, benefiting from the moderate M−O species formed on the surface, the redistribution of surface electron states is induced, thus optimizing the adsorption of OH* and OOH* intermediates on metal oxyhydroxides and awakening the OER activity of MoS_(2).
基金was supported by the National Key Research and Development Program of China(Nos.2020YFC2004300,2020YFC2004303 and 2020YFC2004302)the National Natural Science Foundation of China(Nos.32000980 and 82171533)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515140142,2019A1515110427 and 2020B1515120014)the Key Laboratory Program of Guangdong Higher Education Institutes(No.2020KSYS001)。
文摘Hemiplegia after stroke has become a major cause of the world's high disabilities,and it is vital to enhance our understanding of post-stroke neuroplasticity to develop e±cient rehabilitation programs.This study aimed to explore the brain activation and network reorganization of the motor cortex(MC)with functional near-infrared spectroscopy(fNIRS).The MC hemodynamic signals were gained from 22 stroke patients and 14 healthy subjects during a shoulder-touching task with the right hand.The MC activation pattern and network attributes analyzed with the graph theory were compared between the two groups.The results revealed that healthy controls presented dominant activation in the left MC while stroke patients exhibited dominant activation in the bilateral hemispheres MC.The MC networks for the two groups had small-world properties.Compared with healthy controls,patients had higher transitivity and lower global e±ciency(GE),mean connectivity,and long connections(LCs)in the left MC.In addition,both MC activation and network attributes were correlated with patient's upper limb motor function.The results showed the stronger compensation of the unaffected motor area,the better recovery of the upper limb motor function for patients.Moreover,the MC network possessed high clustering and relatively sparse inter-regional connections during recovery for patients.Our results promote the understanding of MC reorganization during recovery and indicate that MC activation and network could provide clinical assessment signi¯cance in stroke patients.Given the advantages of fNIRS,it shows great application potential in the assessment and rehabilitation of motor function after stroke.