Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors...Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.展开更多
Data cleaning is considered as an effective approach of improving data quality in order to help practitioners and researchers be devoted to downstream analysis and decision-making without worrying about data trustwort...Data cleaning is considered as an effective approach of improving data quality in order to help practitioners and researchers be devoted to downstream analysis and decision-making without worrying about data trustworthiness.This paper provides a systematic summary of the two main stages of data cleaning for Internet of Things(IoT)data with time series characteristics,including error data detection and data repairing.In respect to error data detection techniques,it categorizes an overview of quantitative data error detection methods for detecting single-point errors,continuous errors,and multidimensional time series data errors and qualitative data error detection methods for detecting rule-violating errors.Besides,it provides a detailed description of error data repairing techniques,involving statistics-based repairing,rule-based repairing,and human-involved repairing.We review the strengths and the limitations of the current data cleaning techniques under IoT data applications and conclude with an outlook on the future of IoT data cleaning.展开更多
基金We gratefully acknowledge the support of National Natural Science Foundation of China(NSFC)(Grant No.51977133&Grant No.U2066209).
文摘Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.
基金supported by the National Key Research and Development Program of China(No.2021YFB3300502)National Natural Science Foundation of China(NSFC)(Nos.62202126 and 62232005)Heilongjiang Postdoctoral Financial Assistance(No.LBH-Z21137).
文摘Data cleaning is considered as an effective approach of improving data quality in order to help practitioners and researchers be devoted to downstream analysis and decision-making without worrying about data trustworthiness.This paper provides a systematic summary of the two main stages of data cleaning for Internet of Things(IoT)data with time series characteristics,including error data detection and data repairing.In respect to error data detection techniques,it categorizes an overview of quantitative data error detection methods for detecting single-point errors,continuous errors,and multidimensional time series data errors and qualitative data error detection methods for detecting rule-violating errors.Besides,it provides a detailed description of error data repairing techniques,involving statistics-based repairing,rule-based repairing,and human-involved repairing.We review the strengths and the limitations of the current data cleaning techniques under IoT data applications and conclude with an outlook on the future of IoT data cleaning.