As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of th...As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of the nodes.There is no continuance of network communication between nodes in a delay-tolerant network(DTN).DTN is designed to complete recurring connections between nodes.This approach proposes a dynamic source routing protocol(DSR)based on a feed-forward neural network(FFNN)and energybased random repetition trust calculation in DTN.If another node is looking for a node that swerved off of its path in this situation,routing will fail since it won’t recognize it.However,in the suggested strategy,nodes do not stray from their pathways for routing.It is only likely that the message will reach the destination node if the nodes encounter their destination or an appropriate transitional node on their default mobility route,based on their pattern of mobility.The EBRRTC-DTN algorithm(Energy based random repeat trust computation)is based on the time that has passed since nodes last encountered the destination node.Compared to other existing techniques,simulation results show that this process makes the best decision and expertly determines the best and most appropriate route to send messages to the destination node,which improves routing performance,increases the number of delivered messages,and decreases delivery delay.Therefore,the suggested method is better at providing better QoS(Quality of Service)and increasing network lifetime,tolerating network system latency.展开更多
The functionality of a gene or a protein depends on codon repeats occurring in it.As a consequence of their vitality in protein function and apparent involvement in causing diseases,an interest in these repeats has de...The functionality of a gene or a protein depends on codon repeats occurring in it.As a consequence of their vitality in protein function and apparent involvement in causing diseases,an interest in these repeats has developed in recent years.The analysis of genomic and proteomic sequences to identify such repeats requires some algorithmic support from informatics level.Here,we proposed an offline stand-alone toolkit Repeat Searcher and Motif Detector(RSMD),which uncovers and employs few novel approaches in identification of sequence repeats and motifs to understand their functionality in sequence level and their disease causing tendency.The tool offers various features such as identifying motifs,repeats and identification of disease causing repeats.RSMD was designed to provide an easily understandable graphical user interface(GUI),for the tool will be predominantly accessed by biologists and various researchers in all platforms of life science.GUI was developed using the scripting language Perl and its graphical module PerlTK.RSMD covers algorithmic foundations of computational biology by combining theory with practice.展开更多
文摘As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of the nodes.There is no continuance of network communication between nodes in a delay-tolerant network(DTN).DTN is designed to complete recurring connections between nodes.This approach proposes a dynamic source routing protocol(DSR)based on a feed-forward neural network(FFNN)and energybased random repetition trust calculation in DTN.If another node is looking for a node that swerved off of its path in this situation,routing will fail since it won’t recognize it.However,in the suggested strategy,nodes do not stray from their pathways for routing.It is only likely that the message will reach the destination node if the nodes encounter their destination or an appropriate transitional node on their default mobility route,based on their pattern of mobility.The EBRRTC-DTN algorithm(Energy based random repeat trust computation)is based on the time that has passed since nodes last encountered the destination node.Compared to other existing techniques,simulation results show that this process makes the best decision and expertly determines the best and most appropriate route to send messages to the destination node,which improves routing performance,increases the number of delivered messages,and decreases delivery delay.Therefore,the suggested method is better at providing better QoS(Quality of Service)and increasing network lifetime,tolerating network system latency.
文摘The functionality of a gene or a protein depends on codon repeats occurring in it.As a consequence of their vitality in protein function and apparent involvement in causing diseases,an interest in these repeats has developed in recent years.The analysis of genomic and proteomic sequences to identify such repeats requires some algorithmic support from informatics level.Here,we proposed an offline stand-alone toolkit Repeat Searcher and Motif Detector(RSMD),which uncovers and employs few novel approaches in identification of sequence repeats and motifs to understand their functionality in sequence level and their disease causing tendency.The tool offers various features such as identifying motifs,repeats and identification of disease causing repeats.RSMD was designed to provide an easily understandable graphical user interface(GUI),for the tool will be predominantly accessed by biologists and various researchers in all platforms of life science.GUI was developed using the scripting language Perl and its graphical module PerlTK.RSMD covers algorithmic foundations of computational biology by combining theory with practice.