A high crystalline quality of SiGe fin with an Si-rich composition area using the replacement fin processing is systematically demonstrated in this paper.The fin replacement process based on a standard FinFET process ...A high crystalline quality of SiGe fin with an Si-rich composition area using the replacement fin processing is systematically demonstrated in this paper.The fin replacement process based on a standard FinFET process is developed.A width of less than 20-nm SiGe fin without obvious defect impact both in the direction across the fin and in the direction along the fin is verified by using the high angle annular dark field scanning transmission electron microscopy and the scanning moiréfringe imaging technique.Moreover,the SiGe composition is inhomogenous in the width of the fin.This is induced by the formation of 111 facets.Due to the atomic density of the 111 facets being higher,the epitaxial growth in the direction perpendicular to these facets is slower than in the direction perpendicular to 001.The Ge incorporation is then higher on the 111 facets than on the 001 facets.So,an Si-rich area is observed in the central area and on the bottom of SiGe fin.展开更多
The primary bottleneck to extracting wood defects during ultrasonic testing is the accuracy of identifying the wood defects. The wavelet energy moment was used to extract defect features of artificial wood holes drill...The primary bottleneck to extracting wood defects during ultrasonic testing is the accuracy of identifying the wood defects. The wavelet energy moment was used to extract defect features of artificial wood holes drilled into 120 elm samples that differed in the number of holes to verify the validity of the method. Wavelet energy moment can reflect the distribution of energy along the time axis and the amount of energy in each frequency band,which can effectively extract the energy distribution characteristics of signals in each frequency band; therefore,wavelet energy moment can replace the wavelet frequency band energy and constitute wood defect feature vectors. A principal component analysis was used to normalize and reduce the dimension of the feature vectors. A total of 16 principal component features were then obtained, which can effectively extract the defect features of the different number of holes in the elm samples.展开更多
The North China Craton(NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods:(1) Late Paleozoic to Early Jurassic(~17...The North China Craton(NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods:(1) Late Paleozoic to Early Jurassic(~170 Ma);(2) Middle Jurassic to Early Cretaceous(160-140 Ma);(3) Early Cretaceous to Cenozoic(140 Ma to present). The last two stages saw the lithospheric mantle replacement and coupled basin-mountain response within the North China Craton due to subduction and retreating of the Paleo-Pacific plate, and is the emphasis in this paper. In the first period,the subduction and closure of the PaleoAsian Ocean triggered the back-arc extension, syn-collisional compression and then post-collisional extension accompanied by ubiquitous magmatism along the northern margin of the NCC. Similar processes happened in the southern margin of the craton as the subduction of the Paleo-Tethys ocean and collision with the South China Block. These processes had caused the chemical modification and mechanical destruction of the cratonic margins. The margins could serve as conduits for the asthenosphere upwelling and had the priority for magmatism and deformation. The second period saw the closure of the Mongol-Okhotsk ocean and the shear deformation and magmatism induced by the drifting of the Paleo-Pacific slab. The former led to two pulse of N-S trending compression(Episodes A and B of the Yanshan Movement) and thus the pre-existing continental marginal basins were disintegrated into sporadically basin and range pro vince by the Mesozoic magmatic plutons and NE-SW trending faults.With the anticlockwise rotation of the Paleo-Pacific moving direction, the subduction-related magmatism migrated into the inner part of the craton and the Tanlu fault became normal fault from a sinistral one. The NCC thus turned into a back-arc extension setting at the end of this period. In the third period, the refractory subcontinental lithospheric mantle(SCLM) was firstly remarkably eroded and thinned by the subduction-induced asthenospheric upwelling, especially those beneath the weakzones(i.e.,cratonic margins and the lithospheric Tanlu fault zone). Then a slightly lithospheric thickening occurred when the upwelled asthenosphere got cool and transformed to be lithospheric mantle accreted(~125 Ma) beneath the thinned SCLM. Besides, the magmatism continuously moved southeastward and the extensional deformations preferentially developed in weak zones, which include the Early Cenozoic normal fault transformed from the Jurassic thrust in the Trans-North Orogenic Belt, the crustal detachment and the subsidence of Bohai basin caused by the continuous normal strike slip of the Tanlu fault, the Cenozoic graben basins originated from the fault depression in the Trans-North Orogenic Belt, the Bohai Basin and the Sulu Orogenic belt. With small block size, inner lithospheric weak zones and the surrounding subductions/collisions, the Mesozoic NCC was characterized by(1) lithospheric thinning and crustal detachment triggered by the subduction-induced asthenospheric upwelling.Local crustal contraction and orogenesis appeared in the Trans-North Orogenic Belt coupled with the crustal detachment;(2)then upwelled asthenosphere got cool to be newly-accreted lithospheric mantle and crustal grabens and basin subsidence happened, as a result of the subduction zone retreating. Therefore, the subduction and retreating of the western Pacific plate is the outside dynamics which resulted in mantle replacement and coupled basin-mountain respond within the North China Craton. We consider that the Mesozoic decratonization of the North China Craton,or the Yanshan Movement, is a comprehensive consequence of complex geological processes proceeding surrounding and within craton, involving both the deep lithospheric mantle and shallow continental crust.展开更多
基金the Beijing Municipal Natural Science Foundation,China(Grant No.4202078)the National Key Project of Science and Technology of China(Grant No.2017ZX02315001-002).
文摘A high crystalline quality of SiGe fin with an Si-rich composition area using the replacement fin processing is systematically demonstrated in this paper.The fin replacement process based on a standard FinFET process is developed.A width of less than 20-nm SiGe fin without obvious defect impact both in the direction across the fin and in the direction along the fin is verified by using the high angle annular dark field scanning transmission electron microscopy and the scanning moiréfringe imaging technique.Moreover,the SiGe composition is inhomogenous in the width of the fin.This is induced by the formation of 111 facets.Due to the atomic density of the 111 facets being higher,the epitaxial growth in the direction perpendicular to these facets is slower than in the direction perpendicular to 001.The Ge incorporation is then higher on the 111 facets than on the 001 facets.So,an Si-rich area is observed in the central area and on the bottom of SiGe fin.
基金financially supported by the Fundamental Research Funds for the Central Universities(2572016CB11 and 2572014CB35)Natural Science Foundation of Heilongjiang Province(F2015036 and QC2014C010)948 Project(2014-4-78)
文摘The primary bottleneck to extracting wood defects during ultrasonic testing is the accuracy of identifying the wood defects. The wavelet energy moment was used to extract defect features of artificial wood holes drilled into 120 elm samples that differed in the number of holes to verify the validity of the method. Wavelet energy moment can reflect the distribution of energy along the time axis and the amount of energy in each frequency band,which can effectively extract the energy distribution characteristics of signals in each frequency band; therefore,wavelet energy moment can replace the wavelet frequency band energy and constitute wood defect feature vectors. A principal component analysis was used to normalize and reduce the dimension of the feature vectors. A total of 16 principal component features were then obtained, which can effectively extract the defect features of the different number of holes in the elm samples.
基金supported by the National Key R&D Program of China(Grant No.2016YFC0600403)the National Natural Science Foundation of China(Grant No.91214204)
文摘The North China Craton(NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods:(1) Late Paleozoic to Early Jurassic(~170 Ma);(2) Middle Jurassic to Early Cretaceous(160-140 Ma);(3) Early Cretaceous to Cenozoic(140 Ma to present). The last two stages saw the lithospheric mantle replacement and coupled basin-mountain response within the North China Craton due to subduction and retreating of the Paleo-Pacific plate, and is the emphasis in this paper. In the first period,the subduction and closure of the PaleoAsian Ocean triggered the back-arc extension, syn-collisional compression and then post-collisional extension accompanied by ubiquitous magmatism along the northern margin of the NCC. Similar processes happened in the southern margin of the craton as the subduction of the Paleo-Tethys ocean and collision with the South China Block. These processes had caused the chemical modification and mechanical destruction of the cratonic margins. The margins could serve as conduits for the asthenosphere upwelling and had the priority for magmatism and deformation. The second period saw the closure of the Mongol-Okhotsk ocean and the shear deformation and magmatism induced by the drifting of the Paleo-Pacific slab. The former led to two pulse of N-S trending compression(Episodes A and B of the Yanshan Movement) and thus the pre-existing continental marginal basins were disintegrated into sporadically basin and range pro vince by the Mesozoic magmatic plutons and NE-SW trending faults.With the anticlockwise rotation of the Paleo-Pacific moving direction, the subduction-related magmatism migrated into the inner part of the craton and the Tanlu fault became normal fault from a sinistral one. The NCC thus turned into a back-arc extension setting at the end of this period. In the third period, the refractory subcontinental lithospheric mantle(SCLM) was firstly remarkably eroded and thinned by the subduction-induced asthenospheric upwelling, especially those beneath the weakzones(i.e.,cratonic margins and the lithospheric Tanlu fault zone). Then a slightly lithospheric thickening occurred when the upwelled asthenosphere got cool and transformed to be lithospheric mantle accreted(~125 Ma) beneath the thinned SCLM. Besides, the magmatism continuously moved southeastward and the extensional deformations preferentially developed in weak zones, which include the Early Cenozoic normal fault transformed from the Jurassic thrust in the Trans-North Orogenic Belt, the crustal detachment and the subsidence of Bohai basin caused by the continuous normal strike slip of the Tanlu fault, the Cenozoic graben basins originated from the fault depression in the Trans-North Orogenic Belt, the Bohai Basin and the Sulu Orogenic belt. With small block size, inner lithospheric weak zones and the surrounding subductions/collisions, the Mesozoic NCC was characterized by(1) lithospheric thinning and crustal detachment triggered by the subduction-induced asthenospheric upwelling.Local crustal contraction and orogenesis appeared in the Trans-North Orogenic Belt coupled with the crustal detachment;(2)then upwelled asthenosphere got cool to be newly-accreted lithospheric mantle and crustal grabens and basin subsidence happened, as a result of the subduction zone retreating. Therefore, the subduction and retreating of the western Pacific plate is the outside dynamics which resulted in mantle replacement and coupled basin-mountain respond within the North China Craton. We consider that the Mesozoic decratonization of the North China Craton,or the Yanshan Movement, is a comprehensive consequence of complex geological processes proceeding surrounding and within craton, involving both the deep lithospheric mantle and shallow continental crust.