Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic ...Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.展开更多
In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its ...In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its acceleration response spectrum in any desired time duration is compatible with a time-scaled predefined acceleration response spectrum.For this purpose,simulated stationary acceleration time series is multiplied by the time dependent linear modulation function,then using a simple iterative scheme,it is forced to match a target acceleration response spectrum.It is shown that the generated samples have excellent conformity in low frequency,which is useful for nonlinear endurance time analysis.In the second part of this study,it is shown that this procedure can be extended to generate a set of spatially correlated endurance time excitation functions.This makes it possible to assess the performance of long structures under multi-support seismic excitation using endurance time analysis.展开更多
The spectral representation method (SRM) is most widely used in simulating the stochastic field.The proper orthogonal decomposition (POD) based SRM is an important form.This paper investigates the approximate approach...The spectral representation method (SRM) is most widely used in simulating the stochastic field.The proper orthogonal decomposition (POD) based SRM is an important form.This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems,i.e.,the seismic ground motion and wind velocity fields simulations.Then,the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM).It is concluded that the CPSRM maintains a much higher accuracy than the PSRM.In the CPSRM,the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy;the linearly distributed interpolation nodes are effective in the ground motions simulation;however,the exponentially distributed interpolation nodes are effective in the wind velocity simulation.展开更多
We propose a method for color electroholography using a simple red-green-blue (RGB) gradation representa- tion method without controlling the respective brightness of tile reference RGB-colored lights. The proposed ...We propose a method for color electroholography using a simple red-green-blue (RGB) gradation representa- tion method without controlling the respective brightness of tile reference RGB-colored lights. The proposed method uses RGB multiple bit planes comprising RGB binary-weighted computer-generated holograms with various light transmittanees. The object points of a given three-dimensional (3D) object are assigned to RGB nmltiple bit planes according to their RGB gradation levels. The RGB multiple bit planes are sequentially displayed in a tim-division-multiplexe- manner. Consequently, the proposed method yields a color gradation representation of a reconstructed 3D object.展开更多
Architectural representation encompasses the means used to describe architectural entities.This discipline has long been under constant change due to architects’everpresent desire for innovation.Algorithmic design(AD...Architectural representation encompasses the means used to describe architectural entities.This discipline has long been under constant change due to architects’everpresent desire for innovation.Algorithmic design(AD)is currently making its way into the plethora of representation methods that integrate the architect’s day-to-day work tools.However,it provides its fair share of controversy and hardship as it goes.This paper assesses whether AD is suitable as a representation method for architectural design by making a systematic analysis of this medium as a contemporary representation method.Specifically,we investigate(1)its birth and evolution as a means of representation,(2)the characteristics that make it simultaneously appealing and off-putting to the architectural community,(3)the influence of technological evolution and education on its proliferation,and(4)its capacity to represent design problems in comparison to the currently predominant means of digital architectural representation,that is,computer-aided drafting and building information modeling.展开更多
Based on the relationship between water environment system and human society, water environment carrying capacity (WECC) probes into supporting ability of complex water environment system to the human society. Recen...Based on the relationship between water environment system and human society, water environment carrying capacity (WECC) probes into supporting ability of complex water environment system to the human society. Recent years, due to the shortage of water resources and serious water pollution in several watersheds in China, the research of watershed water environment carrying capacity (WWECC) becomes very important. The conception, connotation and method of representation of WWECC are discussed deeply in this paper. It shows that WWECC is a kind of index that instructs whether the water environment system in watershed can continue to support the development of social economy and ecology, it is dimensionless number.展开更多
The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fu...The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.展开更多
Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and pos...Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR).展开更多
The method of numerical solving of nonlinear model problems of theory of a complex quasi-potential in doubly-connected nonlinear-layered curvilinear domains considering inverse influence function of flow on a conducti...The method of numerical solving of nonlinear model problems of theory of a complex quasi-potential in doubly-connected nonlinear-layered curvilinear domains considering inverse influence function of flow on a conductivity coefficient of medium was developed on the basis of synthesis of numerical methods of the quasi-conformal mappings and summary representations in conjunction with domain decomposition by method Schwartz. The proposed algorithm allows finding the potential of the quasiideals field, construction a motion grid (fluid-flow grid) simultaneously defining the flow lines that separate of sub-domains constancy of coefficient conductivity and identification the piecewise-constant values of coefficient conductivity, the local flows for the known measurements on boundary of domain.展开更多
The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the ef...The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the efficiency of the simulation. The accuracy of the approximation approach may be affected by three factors: matrix for decomposition, distribution of frequency interpolation nodes and elements for interpolation. The influence of these factors on the accuracy of this approach is examined and the following conclusions are drawn. The SRM based on the root decomposition of the lagged coherency matrix exhibits greater accuracy than the SRM based on the root decomposition of the cross spectral matrix. The equal energy distribution of frequency interpolation nodes proposed in this study is more effective than the counter pith with an equal spacing. Elements for interpolation do not have much of an effect on the accuracy, so interpolation of the elements of the decomposed matrix is recommended because it is less complicated from a computational efficiency perspective.展开更多
The present article is an account of results on univalent functions in multiply connected domains obtained by the author. It contains two rery simple proofs of Villat's formula; Schwarz's formula, Poisson'...The present article is an account of results on univalent functions in multiply connected domains obtained by the author. It contains two rery simple proofs of Villat's formula; Schwarz's formula, Poisson's formula and Poisson-Jensen formula in multiply connected domains; the differentiability theorem with respect to the parameter of analytic function family containing one parametric variable on multiply connected domains; variation theorem and parametric representation theorem of univalent functions in multiply connected domains; the solution of an extremal problem of differentiable functionals.展开更多
Based on the role of the polynomial functions on the homogeneous Besov spaces, on the homogeneous Triebel-Lizorkin spaces and on their realized versions, we study and obtain characterizations of these spaces via diffe...Based on the role of the polynomial functions on the homogeneous Besov spaces, on the homogeneous Triebel-Lizorkin spaces and on their realized versions, we study and obtain characterizations of these spaces via difference operators in a certain sense.展开更多
In this paper,the quaternion matrix equations XF-AX=BY and XF-A=BY are investigated.For convenience,they were called generalized Sylvesterquaternion matrix equation and generalized Sylvester-j-conjugate quaternion mat...In this paper,the quaternion matrix equations XF-AX=BY and XF-A=BY are investigated.For convenience,they were called generalized Sylvesterquaternion matrix equation and generalized Sylvester-j-conjugate quaternion matrix equation,which include the Sylvester matrix equation and Lyapunov matrix equation as special cases.By applying of Kronecker map and complex representation of a quaternion matrix,the sufficient conditions to compute the solution can be given and the expressions of the explicit solutions to the above two quaternion matrix equations XF-AX=BY and XF-A=BY are also obtained.By the established expressions,it is easy to compute the solution of the quaternion matrix equation in the above two forms.In addition,two practical algorithms for these two quaternion matrix equations are give.One is complex representation matrix method and the other is a direct algorithm by the given expression.Furthermore,two illustrative examples are proposed to show the efficiency of the given method.展开更多
Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the c...Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the characteristics of inflow turbulence,can significantly impact the quality of predictions.In this study,we examined these boundary conditions within the context of the mountainous terrain around a long-span cable-stayed bridge using a wind tunnel experiment.Various sizes of computational domains and turbulent incoming wind velocities were used in large eddy simulations.The results show that when the height of the computational domain is five times greater than the height of the terrain model,there is minimal influence from the top wall on the wind field characteristics in this complex mountainous area.Expanding the length of the wake region of the computational domain has negligible effects on the wind fields.Turbulence in the inlet boundary reduces the length of the wake region on a leeward hill with a low slope,but has less impact on the mean wind velocity of steep hills.展开更多
A scientific delineation of geographical boundaries reflects the cognitive level of scientific abstraction and systematic analysis of the spatial variation of geographical objects and is a basic scientific issue of ge...A scientific delineation of geographical boundaries reflects the cognitive level of scientific abstraction and systematic analysis of the spatial variation of geographical objects and is a basic scientific issue of geography. From the perspective of earth system science,this study first explicates the core issues(e.g., basic concepts, scientific contents, and basic properties) of geographical boundaries. Based on the principles of scientificity and systematicness, we then classify geographical boundaries in terms of intrinsic mechanisms, extrinsic appearance and scientific attributes. Furthermore, this paper analyzes the mathematical connotation and representation methods of geographical boundaries, discusses the characteristics of and differences between traditional and modern methods for geographical boundary delineation. Finally, we present a framework for a “geographical boundary model”with an integration of qualitative, quantitative, and positioning methods. Focusing on geographical boundary(a basic theoretical problem in geography), this study engaged in concept definition and method analysis, with the findings enriching the theory and methodology of geographical information science.展开更多
Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the ...Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the representation of a chromosome,and genetic algorithm(GA)operators are introduced based on the matrix.Objectives including mass,in-plane performance,and out-of-plane load-bearing ability of the individuals are obtained by fnite element analysis(FEA)using ANSYS,and the matrix-based optimization algorithm is realized in MATLAB by handling multiple constraints such as structural connectivity and in-plane strain requirements.Feasible confgurations of the support structure are achieved.The results confrm that the matrix-based NSGA-II with multiple constraints handling provides an effective method for two-dimensional multi-objective topology optimization.展开更多
Time domain analysis is an essential implement to study the buffeting behavior of long-span bridges for it can consider the non-linear effect which is significant in long-span bridges. The prerequisite of time domain ...Time domain analysis is an essential implement to study the buffeting behavior of long-span bridges for it can consider the non-linear effect which is significant in long-span bridges. The prerequisite of time domain analysis is the accurate description of 3D turbulence winds. In this paper, some hypotheses for simplifying the 3D turbulence simulation of long-span cable-stayed bridges are conducted, considering the structural characteristics. The turbulence wind which is a 3D multivariate stochastic vector process is converted into four independent 1D univariate stochastic processes. Based on recorded wind data from structural health monitoring system (SHMS) of the Sutong Bridge, China, the measured spectra expressions are then presented using the nonlinear least-squares fitting method. Turbulence winds at the Sutong Bridge site are simulated based on the spectral representation method and the Fast Fourier transform (FFT) technique, and the relevant results derived from target spectra including measured spectra and recommended spectra are compared. The reliability and accuracy of the presented turbulence simulation method are validated through comparisons between simulated and target spectra (measured and recommended spectra). The obtained turbulence si-mulations can not only serve further analysis of the buffeting behavior of the Sutong Bridge, but references for structural anti-wind design in adjacent regions.展开更多
基金National Key Research and Development Program of China under Grant No.2023YFE0102900National Natural Science Foundation of China under Grant Nos.52378506 and 52208164。
文摘Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.
文摘In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its acceleration response spectrum in any desired time duration is compatible with a time-scaled predefined acceleration response spectrum.For this purpose,simulated stationary acceleration time series is multiplied by the time dependent linear modulation function,then using a simple iterative scheme,it is forced to match a target acceleration response spectrum.It is shown that the generated samples have excellent conformity in low frequency,which is useful for nonlinear endurance time analysis.In the second part of this study,it is shown that this procedure can be extended to generate a set of spatially correlated endurance time excitation functions.This makes it possible to assess the performance of long structures under multi-support seismic excitation using endurance time analysis.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51278382,90815020)the Chang Jiang Scholars Program and the Innovative Research Team Program of the Ministry of Education of China (Grant No. IRT1125)the "111" Project (Grant No.B13024)
文摘The spectral representation method (SRM) is most widely used in simulating the stochastic field.The proper orthogonal decomposition (POD) based SRM is an important form.This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems,i.e.,the seismic ground motion and wind velocity fields simulations.Then,the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM).It is concluded that the CPSRM maintains a much higher accuracy than the PSRM.In the CPSRM,the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy;the linearly distributed interpolation nodes are effective in the ground motions simulation;however,the exponentially distributed interpolation nodes are effective in the wind velocity simulation.
基金supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research(C)(No.15K00153)
文摘We propose a method for color electroholography using a simple red-green-blue (RGB) gradation representa- tion method without controlling the respective brightness of tile reference RGB-colored lights. The proposed method uses RGB multiple bit planes comprising RGB binary-weighted computer-generated holograms with various light transmittanees. The object points of a given three-dimensional (3D) object are assigned to RGB nmltiple bit planes according to their RGB gradation levels. The RGB multiple bit planes are sequentially displayed in a tim-division-multiplexe- manner. Consequently, the proposed method yields a color gradation representation of a reconstructed 3D object.
基金This work was supported by national funds through Fundacao para a Ciencia e a Tecnologia(FCT)(references UIDB/50021/2020,PTDC/ART-DAQ/31061/2017)PhD grants under contract of FCT(grant numbers SFRH/BD/128628/2017,DFA/BD/4682/2020).
文摘Architectural representation encompasses the means used to describe architectural entities.This discipline has long been under constant change due to architects’everpresent desire for innovation.Algorithmic design(AD)is currently making its way into the plethora of representation methods that integrate the architect’s day-to-day work tools.However,it provides its fair share of controversy and hardship as it goes.This paper assesses whether AD is suitable as a representation method for architectural design by making a systematic analysis of this medium as a contemporary representation method.Specifically,we investigate(1)its birth and evolution as a means of representation,(2)the characteristics that make it simultaneously appealing and off-putting to the architectural community,(3)the influence of technological evolution and education on its proliferation,and(4)its capacity to represent design problems in comparison to the currently predominant means of digital architectural representation,that is,computer-aided drafting and building information modeling.
文摘Based on the relationship between water environment system and human society, water environment carrying capacity (WECC) probes into supporting ability of complex water environment system to the human society. Recent years, due to the shortage of water resources and serious water pollution in several watersheds in China, the research of watershed water environment carrying capacity (WWECC) becomes very important. The conception, connotation and method of representation of WWECC are discussed deeply in this paper. It shows that WWECC is a kind of index that instructs whether the water environment system in watershed can continue to support the development of social economy and ecology, it is dimensionless number.
文摘The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.
基金supported by the National Natural Science Foundation of China(6137901061772421)
文摘Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR).
文摘The method of numerical solving of nonlinear model problems of theory of a complex quasi-potential in doubly-connected nonlinear-layered curvilinear domains considering inverse influence function of flow on a conductivity coefficient of medium was developed on the basis of synthesis of numerical methods of the quasi-conformal mappings and summary representations in conjunction with domain decomposition by method Schwartz. The proposed algorithm allows finding the potential of the quasiideals field, construction a motion grid (fluid-flow grid) simultaneously defining the flow lines that separate of sub-domains constancy of coefficient conductivity and identification the piecewise-constant values of coefficient conductivity, the local flows for the known measurements on boundary of domain.
基金National Natural Science Foundation of China under Grant No.51308191 and Grant No.51278382the Fundamental Research Funds for the Central Universities of China under Grant No.2013B01514+1 种基金the Chang Jiang Scholars Program and the Innovative Research Team Program of the Ministry of Education of China under Grant No.IRT1125the 111 Project(No.B13024)
文摘The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the efficiency of the simulation. The accuracy of the approximation approach may be affected by three factors: matrix for decomposition, distribution of frequency interpolation nodes and elements for interpolation. The influence of these factors on the accuracy of this approach is examined and the following conclusions are drawn. The SRM based on the root decomposition of the lagged coherency matrix exhibits greater accuracy than the SRM based on the root decomposition of the cross spectral matrix. The equal energy distribution of frequency interpolation nodes proposed in this study is more effective than the counter pith with an equal spacing. Elements for interpolation do not have much of an effect on the accuracy, so interpolation of the elements of the decomposed matrix is recommended because it is less complicated from a computational efficiency perspective.
文摘The present article is an account of results on univalent functions in multiply connected domains obtained by the author. It contains two rery simple proofs of Villat's formula; Schwarz's formula, Poisson's formula and Poisson-Jensen formula in multiply connected domains; the differentiability theorem with respect to the parameter of analytic function family containing one parametric variable on multiply connected domains; variation theorem and parametric representation theorem of univalent functions in multiply connected domains; the solution of an extremal problem of differentiable functionals.
文摘Based on the role of the polynomial functions on the homogeneous Besov spaces, on the homogeneous Triebel-Lizorkin spaces and on their realized versions, we study and obtain characterizations of these spaces via difference operators in a certain sense.
基金This project is granted financial support from NSFC (11071079)NSFC (10901056)+2 种基金Shanghai Science and Technology Commission Venus (11QA1402200)Ningbo Natural Science Foundation (2010A610097)the Fundamental Research Funds for the Central Universities and Zhejiang Natural Science Foundation (Y6110043)
文摘In this paper,the quaternion matrix equations XF-AX=BY and XF-A=BY are investigated.For convenience,they were called generalized Sylvesterquaternion matrix equation and generalized Sylvester-j-conjugate quaternion matrix equation,which include the Sylvester matrix equation and Lyapunov matrix equation as special cases.By applying of Kronecker map and complex representation of a quaternion matrix,the sufficient conditions to compute the solution can be given and the expressions of the explicit solutions to the above two quaternion matrix equations XF-AX=BY and XF-A=BY are also obtained.By the established expressions,it is easy to compute the solution of the quaternion matrix equation in the above two forms.In addition,two practical algorithms for these two quaternion matrix equations are give.One is complex representation matrix method and the other is a direct algorithm by the given expression.Furthermore,two illustrative examples are proposed to show the efficiency of the given method.
基金supported by the National Natural Science Foundation of China(Nos.51925808 and 52178516)the Natural Science Foundation of Hunan Province(Nos.2020JJ5745 and 2023JJ20073),China.
文摘Large eddy simulations generally are used to predict 3D wind field characteristics in complex mountainous areas.Certain simulation boundary conditions,such as the height and length of the computational domain or the characteristics of inflow turbulence,can significantly impact the quality of predictions.In this study,we examined these boundary conditions within the context of the mountainous terrain around a long-span cable-stayed bridge using a wind tunnel experiment.Various sizes of computational domains and turbulent incoming wind velocities were used in large eddy simulations.The results show that when the height of the computational domain is five times greater than the height of the terrain model,there is minimal influence from the top wall on the wind field characteristics in this complex mountainous area.Expanding the length of the wake region of the computational domain has negligible effects on the wind fields.Turbulence in the inlet boundary reduces the length of the wake region on a leeward hill with a low slope,but has less impact on the mean wind velocity of steep hills.
基金National Natural Science Foundation of China,No.41930102。
文摘A scientific delineation of geographical boundaries reflects the cognitive level of scientific abstraction and systematic analysis of the spatial variation of geographical objects and is a basic scientific issue of geography. From the perspective of earth system science,this study first explicates the core issues(e.g., basic concepts, scientific contents, and basic properties) of geographical boundaries. Based on the principles of scientificity and systematicness, we then classify geographical boundaries in terms of intrinsic mechanisms, extrinsic appearance and scientific attributes. Furthermore, this paper analyzes the mathematical connotation and representation methods of geographical boundaries, discusses the characteristics of and differences between traditional and modern methods for geographical boundary delineation. Finally, we present a framework for a “geographical boundary model”with an integration of qualitative, quantitative, and positioning methods. Focusing on geographical boundary(a basic theoretical problem in geography), this study engaged in concept definition and method analysis, with the findings enriching the theory and methodology of geographical information science.
基金supported by the National Natural Science Foundation of China(Nos.50905085 and 91116020)the National Science Foundation for Post-doctoral Scientists of China(No.2012M511263)
文摘Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the representation of a chromosome,and genetic algorithm(GA)operators are introduced based on the matrix.Objectives including mass,in-plane performance,and out-of-plane load-bearing ability of the individuals are obtained by fnite element analysis(FEA)using ANSYS,and the matrix-based optimization algorithm is realized in MATLAB by handling multiple constraints such as structural connectivity and in-plane strain requirements.Feasible confgurations of the support structure are achieved.The results confrm that the matrix-based NSGA-II with multiple constraints handling provides an effective method for two-dimensional multi-objective topology optimization.
基金supported by the National Natural Science Foundation of China (Nos. 50725828, 50908046, and 50978056)the Teaching & Scientific Research Fund for Excellent Young Teachers of Southeast University+2 种基金the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineeringthe Basic Scientific & Research Fund of Southeast University (No. Seucx-201106)the Priority Academic Program Development Foundation of Jiangsu Higher Education Institutions, China
文摘Time domain analysis is an essential implement to study the buffeting behavior of long-span bridges for it can consider the non-linear effect which is significant in long-span bridges. The prerequisite of time domain analysis is the accurate description of 3D turbulence winds. In this paper, some hypotheses for simplifying the 3D turbulence simulation of long-span cable-stayed bridges are conducted, considering the structural characteristics. The turbulence wind which is a 3D multivariate stochastic vector process is converted into four independent 1D univariate stochastic processes. Based on recorded wind data from structural health monitoring system (SHMS) of the Sutong Bridge, China, the measured spectra expressions are then presented using the nonlinear least-squares fitting method. Turbulence winds at the Sutong Bridge site are simulated based on the spectral representation method and the Fast Fourier transform (FFT) technique, and the relevant results derived from target spectra including measured spectra and recommended spectra are compared. The reliability and accuracy of the presented turbulence simulation method are validated through comparisons between simulated and target spectra (measured and recommended spectra). The obtained turbulence si-mulations can not only serve further analysis of the buffeting behavior of the Sutong Bridge, but references for structural anti-wind design in adjacent regions.