As 5G becomes commercial,researchers have turned attention toward the Sixth-Generation(6G)network with the vision of connecting intelligence in a green energy-efficient manner.Federated learning triggers an upsurge of...As 5G becomes commercial,researchers have turned attention toward the Sixth-Generation(6G)network with the vision of connecting intelligence in a green energy-efficient manner.Federated learning triggers an upsurge of green intelligent services such as resources orchestration of communication infrastructures while preserving privacy and increasing communication efficiency.However,designing effective incentives in federated learning is challenging due to the dynamic available clients and the correlation between clients'contributions during the learning process.In this paper,we propose a dynamic incentive and reputation mechanism to improve energy efficiency and training performance of federated learning.The proposed incentive based on the Stackelberg game can timely adjust optimal energy consumption with changes in available clients during federated learning.Meanwhile,clients’contributions in reputation management are formulated based on the cooperative game to capture the correlation between tasks,which satisfies availability,fairness,and additivity.The simulation results show that the proposed scheme can significantly motivate high-performance clients to participate in federated learning and improve the accuracy and energy efficiency of the federated learning model.展开更多
A self-contained connection of wireless links that functions without any infrastructure is known as Mobile Ad Hoc Network(MANET).A MANET’s nodes could engage actively and dynamically with one another.However,MAN-ETs,...A self-contained connection of wireless links that functions without any infrastructure is known as Mobile Ad Hoc Network(MANET).A MANET’s nodes could engage actively and dynamically with one another.However,MAN-ETs,from the other side,are exposed to severe potential threats that are difficult to counter with present security methods.As a result,several safe communication protocols designed to enhance the secure interaction among MANET nodes.In this research,we offer a reputed optimal routing value among network nodes,secure computations,and misbehavior detection predicated on node’s trust levels with a Hybrid Trust based Reputation Mechanism(HTRM).In addition,the study designs a robust Public Key Infrastructure(PKI)system using the suggested trust evaluation method in terms of“key”generation,which is a crucial component of a PKI cryptosystem.We also concentrate on the solid node authenticating process that relies on pre-authentication.To ensure edge-to-edge security,we assess safe,trustworthy routes to secure computations and authenticate mobile nodes,incorporating uncertainty into the trust management solution.When compared to other protocols,our recommended approach performs better.Finally,we use simulations data and performance evaluation metrics to verify our suggested approach’s validity Our approach outperformed the competing systems in terms of overall end-to-end delay,packet delivery ratio,performance,power consumption,and key-computing time by 3.47%,3.152%,2.169%,and 3.527%,3.762%,significantly.展开更多
In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of sate...In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed.展开更多
文摘As 5G becomes commercial,researchers have turned attention toward the Sixth-Generation(6G)network with the vision of connecting intelligence in a green energy-efficient manner.Federated learning triggers an upsurge of green intelligent services such as resources orchestration of communication infrastructures while preserving privacy and increasing communication efficiency.However,designing effective incentives in federated learning is challenging due to the dynamic available clients and the correlation between clients'contributions during the learning process.In this paper,we propose a dynamic incentive and reputation mechanism to improve energy efficiency and training performance of federated learning.The proposed incentive based on the Stackelberg game can timely adjust optimal energy consumption with changes in available clients during federated learning.Meanwhile,clients’contributions in reputation management are formulated based on the cooperative game to capture the correlation between tasks,which satisfies availability,fairness,and additivity.The simulation results show that the proposed scheme can significantly motivate high-performance clients to participate in federated learning and improve the accuracy and energy efficiency of the federated learning model.
文摘A self-contained connection of wireless links that functions without any infrastructure is known as Mobile Ad Hoc Network(MANET).A MANET’s nodes could engage actively and dynamically with one another.However,MAN-ETs,from the other side,are exposed to severe potential threats that are difficult to counter with present security methods.As a result,several safe communication protocols designed to enhance the secure interaction among MANET nodes.In this research,we offer a reputed optimal routing value among network nodes,secure computations,and misbehavior detection predicated on node’s trust levels with a Hybrid Trust based Reputation Mechanism(HTRM).In addition,the study designs a robust Public Key Infrastructure(PKI)system using the suggested trust evaluation method in terms of“key”generation,which is a crucial component of a PKI cryptosystem.We also concentrate on the solid node authenticating process that relies on pre-authentication.To ensure edge-to-edge security,we assess safe,trustworthy routes to secure computations and authenticate mobile nodes,incorporating uncertainty into the trust management solution.When compared to other protocols,our recommended approach performs better.Finally,we use simulations data and performance evaluation metrics to verify our suggested approach’s validity Our approach outperformed the competing systems in terms of overall end-to-end delay,packet delivery ratio,performance,power consumption,and key-computing time by 3.47%,3.152%,2.169%,and 3.527%,3.762%,significantly.
基金supported in part by the National Natural Science Foundation of China under Grant No.U2268204,62172061 and 61871422National Key R&D Program of China under Grant No.2020YFB1711800 and 2020YFB1707900+2 种基金the Science and Technology Project of Sichuan Province under Grant No.2023ZHCG0014,2023ZHCG0011,2022YFG0155,2022YFG0157,2021GFW019,2021YFG0152,2021YFG0025,2020YFG0322Central Universities of Southwest Minzu University under Grant No.ZYN2022032,2023NYXXS034the State Scholarship Fund of the China Scholarship Council under Grant No.202008510081。
文摘In mega-constellation Communication Systems, efficient routing algorithms and data transmission technologies are employed to ensure fast and reliable data transfer. However, the limited computational resources of satellites necessitate the use of edge computing to enhance secure communication.While edge computing reduces the burden on cloud computing, it introduces security and reliability challenges in open satellite communication channels. To address these challenges, we propose a blockchain architecture specifically designed for edge computing in mega-constellation communication systems. This architecture narrows down the consensus scope of the blockchain to meet the requirements of edge computing while ensuring comprehensive log storage across the network. Additionally, we introduce a reputation management mechanism for nodes within the blockchain, evaluating their trustworthiness, workload, and efficiency. Nodes with higher reputation scores are selected to participate in tasks and are appropriately incentivized. Simulation results demonstrate that our approach achieves a task result reliability of 95% while improving computational speed.