Wireless Mesh Networks (WMNs) are vulnerable to various security threats because of their special infrastructure and communication mode, wherein insider attacks are the most challenging issue. To address this proble...Wireless Mesh Networks (WMNs) are vulnerable to various security threats because of their special infrastructure and communication mode, wherein insider attacks are the most challenging issue. To address this problem and protect innocent users from malicious attacks, it is important to encourage cooperation and deter malicious behaviors. Reputation systems constitute a major category of techniques used for managing trust in distributed networks, and they are effective in characterizing and quantifying a node's behavior for WMNs. However, conventional layered reputation mechanisms ignore several key factors of reputation in other layers; therefore, they cannot provide optimal performance and accurate malicious node identification and isolation for WMNs. In this paper, we propose a novel dynamic reputation mechanism, SLCRM, which couples reputation systems with a cross-layer design and node-security-rating classification techniques to dynamically detect and restrict insider attacks. Simulation results show that in terms of network throughput, packet delivery ratio, malicious nodes' identification, and success rates, SI_CRM imple- ments security protection against insider attacks in a more dynamic, effective, and efficient manner than the subjective logic and uncertainty-based reputation model and the familiarity-based reputation model.展开更多
A self-contained connection of wireless links that functions without any infrastructure is known as Mobile Ad Hoc Network(MANET).A MANET’s nodes could engage actively and dynamically with one another.However,MAN-ETs,...A self-contained connection of wireless links that functions without any infrastructure is known as Mobile Ad Hoc Network(MANET).A MANET’s nodes could engage actively and dynamically with one another.However,MAN-ETs,from the other side,are exposed to severe potential threats that are difficult to counter with present security methods.As a result,several safe communication protocols designed to enhance the secure interaction among MANET nodes.In this research,we offer a reputed optimal routing value among network nodes,secure computations,and misbehavior detection predicated on node’s trust levels with a Hybrid Trust based Reputation Mechanism(HTRM).In addition,the study designs a robust Public Key Infrastructure(PKI)system using the suggested trust evaluation method in terms of“key”generation,which is a crucial component of a PKI cryptosystem.We also concentrate on the solid node authenticating process that relies on pre-authentication.To ensure edge-to-edge security,we assess safe,trustworthy routes to secure computations and authenticate mobile nodes,incorporating uncertainty into the trust management solution.When compared to other protocols,our recommended approach performs better.Finally,we use simulations data and performance evaluation metrics to verify our suggested approach’s validity Our approach outperformed the competing systems in terms of overall end-to-end delay,packet delivery ratio,performance,power consumption,and key-computing time by 3.47%,3.152%,2.169%,and 3.527%,3.762%,significantly.展开更多
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1078the Key Program of NSFC-Guangdong Union Foundation under Grant No.U1135002+1 种基金Major National S&T Program under Grant No.2011ZX03005-002the Fundamental Research Funds for the Central Universities under Grant No.JY10000903001
文摘Wireless Mesh Networks (WMNs) are vulnerable to various security threats because of their special infrastructure and communication mode, wherein insider attacks are the most challenging issue. To address this problem and protect innocent users from malicious attacks, it is important to encourage cooperation and deter malicious behaviors. Reputation systems constitute a major category of techniques used for managing trust in distributed networks, and they are effective in characterizing and quantifying a node's behavior for WMNs. However, conventional layered reputation mechanisms ignore several key factors of reputation in other layers; therefore, they cannot provide optimal performance and accurate malicious node identification and isolation for WMNs. In this paper, we propose a novel dynamic reputation mechanism, SLCRM, which couples reputation systems with a cross-layer design and node-security-rating classification techniques to dynamically detect and restrict insider attacks. Simulation results show that in terms of network throughput, packet delivery ratio, malicious nodes' identification, and success rates, SI_CRM imple- ments security protection against insider attacks in a more dynamic, effective, and efficient manner than the subjective logic and uncertainty-based reputation model and the familiarity-based reputation model.
文摘A self-contained connection of wireless links that functions without any infrastructure is known as Mobile Ad Hoc Network(MANET).A MANET’s nodes could engage actively and dynamically with one another.However,MAN-ETs,from the other side,are exposed to severe potential threats that are difficult to counter with present security methods.As a result,several safe communication protocols designed to enhance the secure interaction among MANET nodes.In this research,we offer a reputed optimal routing value among network nodes,secure computations,and misbehavior detection predicated on node’s trust levels with a Hybrid Trust based Reputation Mechanism(HTRM).In addition,the study designs a robust Public Key Infrastructure(PKI)system using the suggested trust evaluation method in terms of“key”generation,which is a crucial component of a PKI cryptosystem.We also concentrate on the solid node authenticating process that relies on pre-authentication.To ensure edge-to-edge security,we assess safe,trustworthy routes to secure computations and authenticate mobile nodes,incorporating uncertainty into the trust management solution.When compared to other protocols,our recommended approach performs better.Finally,we use simulations data and performance evaluation metrics to verify our suggested approach’s validity Our approach outperformed the competing systems in terms of overall end-to-end delay,packet delivery ratio,performance,power consumption,and key-computing time by 3.47%,3.152%,2.169%,and 3.527%,3.762%,significantly.