Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in in...Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in initial deployment(i.e.the Starlink),the communication between satellites is based on ground stations with radio frequency signals.Due to the rapid movement of satellites,this hybrid topology of LEO-SCs and ground stations is time-varying,which imposes a major challenge to uninterrupted service provisioning and network management.In this paper,we focus on solving two notable problems in such a ground station-assisted LEO-SC topology,i.e.,traffic engineering and fast reroute,to guarantee that the packets are forwarded in a balanced and uninterrupted manner.Specifically,we employ segment routing to support the arbitrary path routing in LEO-SCs.To solve the traffic engineering problem,we proposed two source routings with traffic splitting algorithms,Delay-Bounded Traffic Splitting(DBTS)and DBTS+,where DBTS equally splits a flow and DBTS+favors shorter paths.Simu-lation results show that DBTS+can achieve about 30%lower maximum satellite load at the cost of about 10%more delay.To guarantee the fast recovery of failures,two fast reroute mechanisms,Loop-Free Alternate(LFA)and LFA+,are studied,where LFA pre-computes an alternate next-hop as a backup while LFA+finds a 2-segment backup path.We show that LFA+can increase the percentage of protection coverage by about 15%.展开更多
During convergence,after a link state change in traditional networks with a distributed control plane,packets may get caught in transient forwarding loops.Such loops can be avoided by imposing a certain order among th...During convergence,after a link state change in traditional networks with a distributed control plane,packets may get caught in transient forwarding loops.Such loops can be avoided by imposing a certain order among the routers in updating their forwarding information bases(FIBs),but it requires some form of coordination among routers.As an alternative,a progressive link metric increment method has been proposed for loop-free forwarding without ordered FIB updates,but it takes longer to converge to the target state.In this paper,we show that the order of updates rarely matters for loop-free convergence when the failure inference-based fast reroute(FIFR)scheme with interface-specific forwarding is employed for dealing with link failures.The key insight is to have each router install the traditional interface-independent forwarding entries as soon as they are recomputed during convergence and install the recomputed interface-specific backwarding entries post-convergence.Our evaluation of 280 real and random topologies confirms that the order of updates does not matter with the proposed approach for 17336 out of 17339 links in those topologies.To handle such rare cases where the order matters,it can be coupled with progressive link metric increments to ensure loop-freedom with unordered FIB updates.Thus,the proposed approach,referred to as FIFR++,makes it possible to achieve disruption-free fast convergence and fast reroute without requiring any modification to the IP datagram and without needing any coordination between routers.展开更多
Traffic simulators are utilized to solve a variety of traffic-related problems.For such simulators,origin-destination(OD)traffic volumes as mobility demands are required to input,and we need to estimate them.The autho...Traffic simulators are utilized to solve a variety of traffic-related problems.For such simulators,origin-destination(OD)traffic volumes as mobility demands are required to input,and we need to estimate them.The authors regard an OD estimation as a bi-level programming problem,and apply a microscopic traffic simulation model to it.However,the simulation trials can be computationally expensive if full dynamic rerouting is allowed,when employing multi-agent-based models in the estimation process.This paper proposes an efficient OD estimation method using a multi-agent-based simulator with restricted dynamic rerouting to reduce the computational load.Even though,in the case of large traffic demand,the restriction on dynamic rerouting can result in heavier congestion.The authors resolve this problem by introducing constraints of the bi-level programming problem depending on link congestion.Test results show that the accuracy of the link traffic volume reproduced with the proposed method is virtually identical to that of existing methods but that the proposed method is more computationally efficient in a wide-range or high-demand context.展开更多
A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devise...A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devised to accelerate the algorithm.Besides,an enhanced interval tree is used to manage the intermediate data structure.In order to improve the completion rate of routing,a new gridless rip up and rerouting algorithm is proposed.The experimental results indicate that the completion rate is improved after the rip up and reroute process and the speed of this algorithm is satisfactory.展开更多
For mobile satellite networks, an appropriate handover scheme should be devised to shorten handover delay with optimized application of network resources. By introducing the handover cost model of service, this articl...For mobile satellite networks, an appropriate handover scheme should be devised to shorten handover delay with optimized application of network resources. By introducing the handover cost model of service, this article proposes a rerouting triggering scheme for path optimization after handover and a new minimum cost handover algorithm for mobile satellite networks. This algorithm ensures the quality of service (QoS) parameters, such as delay, during the handover and minimizes the handover costs. Simulation indicates that this algorithm is superior to other current algorithms in guaranteeing the QoS and decreasing handover costs.展开更多
It is well-known that today's inter-domain routing protocol, Border Gateway Protocol (BGP), converges slowly during network failures. During the convergence period, widespread tempo-rary burst packet loss happens ...It is well-known that today's inter-domain routing protocol, Border Gateway Protocol (BGP), converges slowly during network failures. During the convergence period, widespread tempo-rary burst packet loss happens that may be caused by route loops or blackholes. In this paper, we present a Protection Tunnel based Rerouting (PTR) mechanism-a novel scheme for delivering packet continuously during period of convergence. PTR scheme pre-establishes protection tunnel among routers. Once the inter-domain link failed, routers could redirect those influenced packets along pro-tection tunnel to a router that has a valid path to destination. Therefore, packets could be forwarded continuously even encountering fault links. The performances of PTR scheme are simulated. The results demonstrate that PTR scheme is more resilient to link failures than BGP. The cost caused by PTR scheme is very little and acceptable.展开更多
The two main factors contributing to depletion of freshwater resources are climate change and anthropological variables. This study presents statistical analyses that are local in its specifics yet global in its relev...The two main factors contributing to depletion of freshwater resources are climate change and anthropological variables. This study presents statistical analyses that are local in its specifics yet global in its relevance. The decline in Gulf Coast aquifer water quality and quantity has been alarming especially with the increased demand on fresh water in neighboring non-coastal communities. This study used seawater levels, groundwater use, and well data to investigate the association of these factors on the salinity of water indicated by chloride levels. Statistical analyses were conducted pointing to the high significance of both sea water level and groundwater withdrawals to chloride concentrations. However, groundwater withdrawal had higher significance which points to the need of water management systems in order to limit groundwater use. The findings also point to the great impact of increased groundwater salinity in the Gulf Coast aquifer on agriculture and socioeconomic status of coastal communities. The high costs of desalinization point to the increased signification of water rerouting and groundwater management systems. Further investigation and actions are in dire need to manage these vulnerabilities of the coastal communities.展开更多
As the technology of IP Fast Rerouting (FRR) become mature and the related methods and specifi cation such as RFC5286 accepted as standard, it is expected that IP FRR will be deployed gradually and will enhance the su...As the technology of IP Fast Rerouting (FRR) become mature and the related methods and specifi cation such as RFC5286 accepted as standard, it is expected that IP FRR will be deployed gradually and will enhance the survivability of IP network. This paper presents a different method for computing the Loop-free Alternate Interfaces. The new algorithm can be referred as "Next-Hop Cost Decrease (NHCD)" criterion. Compared with the RFC5286 LFA method, NHCD can handle both the simultaneous link failure and node failure, including multi-link failures. It has less computational complexity and can be used uniformly in the Traffi c Engineering and Network Recovery. However, NHCD is somewhat lower than the LFA method on recovery ratio of single link failure. After a formal description of NHCD criterion and a proof of loopfree alternates, the paper presents the simulation results of NHCD.展开更多
Network failures are common on the Internet, and with mission-critical services widely applied, there grows demand for the Internet to maintain the performance in possibilities of failures. However, the border gateway...Network failures are common on the Internet, and with mission-critical services widely applied, there grows demand for the Internet to maintain the performance in possibilities of failures. However, the border gateway protocol(BGP) can not react quickly to be recovered from them, which leads to unreliable packet delivery degrading the end-to-end performance. Although much solutions were proposed to address the problem, there exist limitations. The authors designed a software defined autonomous system(AS)-level fast rerouting(SD-FRR) to efficiently recover from interdomain link failures in the administrative domain. The approach leverages the principle of software defined networking(SDN) to achieve the centralized control of the entire network. By considering routing policies and BGP decision rules, an algorithm that can automatically find a policy-compliant protection path in case of link failure was proposed. The OpenF low forwarding rules are installed on routers to ensure data forwarding. Furthermore, to deactivate the protection path, how to remove flow entries based on prefixes was proposed. Experiments show that the proposal provides effective failure recovery and does not introduce significant control overhead to the network.展开更多
文摘Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in initial deployment(i.e.the Starlink),the communication between satellites is based on ground stations with radio frequency signals.Due to the rapid movement of satellites,this hybrid topology of LEO-SCs and ground stations is time-varying,which imposes a major challenge to uninterrupted service provisioning and network management.In this paper,we focus on solving two notable problems in such a ground station-assisted LEO-SC topology,i.e.,traffic engineering and fast reroute,to guarantee that the packets are forwarded in a balanced and uninterrupted manner.Specifically,we employ segment routing to support the arbitrary path routing in LEO-SCs.To solve the traffic engineering problem,we proposed two source routings with traffic splitting algorithms,Delay-Bounded Traffic Splitting(DBTS)and DBTS+,where DBTS equally splits a flow and DBTS+favors shorter paths.Simu-lation results show that DBTS+can achieve about 30%lower maximum satellite load at the cost of about 10%more delay.To guarantee the fast recovery of failures,two fast reroute mechanisms,Loop-Free Alternate(LFA)and LFA+,are studied,where LFA pre-computes an alternate next-hop as a backup while LFA+finds a 2-segment backup path.We show that LFA+can increase the percentage of protection coverage by about 15%.
文摘During convergence,after a link state change in traditional networks with a distributed control plane,packets may get caught in transient forwarding loops.Such loops can be avoided by imposing a certain order among the routers in updating their forwarding information bases(FIBs),but it requires some form of coordination among routers.As an alternative,a progressive link metric increment method has been proposed for loop-free forwarding without ordered FIB updates,but it takes longer to converge to the target state.In this paper,we show that the order of updates rarely matters for loop-free convergence when the failure inference-based fast reroute(FIFR)scheme with interface-specific forwarding is employed for dealing with link failures.The key insight is to have each router install the traditional interface-independent forwarding entries as soon as they are recomputed during convergence and install the recomputed interface-specific backwarding entries post-convergence.Our evaluation of 280 real and random topologies confirms that the order of updates does not matter with the proposed approach for 17336 out of 17339 links in those topologies.To handle such rare cases where the order matters,it can be coupled with progressive link metric increments to ensure loop-freedom with unordered FIB updates.Thus,the proposed approach,referred to as FIFR++,makes it possible to achieve disruption-free fast convergence and fast reroute without requiring any modification to the IP datagram and without needing any coordination between routers.
基金supported by JSPS KAKENHI (Grant Nos.15H01785 and 19H02377).
文摘Traffic simulators are utilized to solve a variety of traffic-related problems.For such simulators,origin-destination(OD)traffic volumes as mobility demands are required to input,and we need to estimate them.The authors regard an OD estimation as a bi-level programming problem,and apply a microscopic traffic simulation model to it.However,the simulation trials can be computationally expensive if full dynamic rerouting is allowed,when employing multi-agent-based models in the estimation process.This paper proposes an efficient OD estimation method using a multi-agent-based simulator with restricted dynamic rerouting to reduce the computational load.Even though,in the case of large traffic demand,the restriction on dynamic rerouting can result in heavier congestion.The authors resolve this problem by introducing constraints of the bi-level programming problem depending on link congestion.Test results show that the accuracy of the link traffic volume reproduced with the proposed method is virtually identical to that of existing methods but that the proposed method is more computationally efficient in a wide-range or high-demand context.
文摘A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devised to accelerate the algorithm.Besides,an enhanced interval tree is used to manage the intermediate data structure.In order to improve the completion rate of routing,a new gridless rip up and rerouting algorithm is proposed.The experimental results indicate that the completion rate is improved after the rip up and reroute process and the speed of this algorithm is satisfactory.
基金National Natural Science Foundation of China (60532030)National Natural Science Foundation for Distinguished Young Scholars(60625102)
文摘For mobile satellite networks, an appropriate handover scheme should be devised to shorten handover delay with optimized application of network resources. By introducing the handover cost model of service, this article proposes a rerouting triggering scheme for path optimization after handover and a new minimum cost handover algorithm for mobile satellite networks. This algorithm ensures the quality of service (QoS) parameters, such as delay, during the handover and minimizes the handover costs. Simulation indicates that this algorithm is superior to other current algorithms in guaranteeing the QoS and decreasing handover costs.
基金Supported by the Major State Basic Research Development Program(No.2007CB307102)the State High Technology Research Development Program(No.2009AA01A346)
文摘It is well-known that today's inter-domain routing protocol, Border Gateway Protocol (BGP), converges slowly during network failures. During the convergence period, widespread tempo-rary burst packet loss happens that may be caused by route loops or blackholes. In this paper, we present a Protection Tunnel based Rerouting (PTR) mechanism-a novel scheme for delivering packet continuously during period of convergence. PTR scheme pre-establishes protection tunnel among routers. Once the inter-domain link failed, routers could redirect those influenced packets along pro-tection tunnel to a router that has a valid path to destination. Therefore, packets could be forwarded continuously even encountering fault links. The performances of PTR scheme are simulated. The results demonstrate that PTR scheme is more resilient to link failures than BGP. The cost caused by PTR scheme is very little and acceptable.
文摘The two main factors contributing to depletion of freshwater resources are climate change and anthropological variables. This study presents statistical analyses that are local in its specifics yet global in its relevance. The decline in Gulf Coast aquifer water quality and quantity has been alarming especially with the increased demand on fresh water in neighboring non-coastal communities. This study used seawater levels, groundwater use, and well data to investigate the association of these factors on the salinity of water indicated by chloride levels. Statistical analyses were conducted pointing to the high significance of both sea water level and groundwater withdrawals to chloride concentrations. However, groundwater withdrawal had higher significance which points to the need of water management systems in order to limit groundwater use. The findings also point to the great impact of increased groundwater salinity in the Gulf Coast aquifer on agriculture and socioeconomic status of coastal communities. The high costs of desalinization point to the increased signification of water rerouting and groundwater management systems. Further investigation and actions are in dire need to manage these vulnerabilities of the coastal communities.
文摘As the technology of IP Fast Rerouting (FRR) become mature and the related methods and specifi cation such as RFC5286 accepted as standard, it is expected that IP FRR will be deployed gradually and will enhance the survivability of IP network. This paper presents a different method for computing the Loop-free Alternate Interfaces. The new algorithm can be referred as "Next-Hop Cost Decrease (NHCD)" criterion. Compared with the RFC5286 LFA method, NHCD can handle both the simultaneous link failure and node failure, including multi-link failures. It has less computational complexity and can be used uniformly in the Traffi c Engineering and Network Recovery. However, NHCD is somewhat lower than the LFA method on recovery ratio of single link failure. After a formal description of NHCD criterion and a proof of loopfree alternates, the paper presents the simulation results of NHCD.
基金supported by the Open Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province of China (13zxtk03)
文摘Network failures are common on the Internet, and with mission-critical services widely applied, there grows demand for the Internet to maintain the performance in possibilities of failures. However, the border gateway protocol(BGP) can not react quickly to be recovered from them, which leads to unreliable packet delivery degrading the end-to-end performance. Although much solutions were proposed to address the problem, there exist limitations. The authors designed a software defined autonomous system(AS)-level fast rerouting(SD-FRR) to efficiently recover from interdomain link failures in the administrative domain. The approach leverages the principle of software defined networking(SDN) to achieve the centralized control of the entire network. By considering routing policies and BGP decision rules, an algorithm that can automatically find a policy-compliant protection path in case of link failure was proposed. The OpenF low forwarding rules are installed on routers to ensure data forwarding. Furthermore, to deactivate the protection path, how to remove flow entries based on prefixes was proposed. Experiments show that the proposal provides effective failure recovery and does not introduce significant control overhead to the network.