Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such ...Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.展开更多
Radiation damage is an important factor that must be considered while designing nuclear facilities and nuclear materials. In this study, radiation damage is investigated in graphite, which is used as a neutron reflect...Radiation damage is an important factor that must be considered while designing nuclear facilities and nuclear materials. In this study, radiation damage is investigated in graphite, which is used as a neutron reflector in the Tehran Research Reactor (TRR) core. Radiation damage is shown by displacement per atom (dpa) unit. A cross section of the material was created by using the SPECOMP code. The concentration of impurities present in the non-irradiated graphite was measured by using the ICP-AES method. In the present study the MCNPX code had identified the most sensitive location for radiation damage inside the reactor core. Subsequently, the radiation damage (spectral-averaged dpa values) in the aforementioned location was calculated by using the SPECTER, SRIM Monte Carlo codes, and Norgett, Robinson and Torrens (NRT) model. The results of “Ion Distribution and Quick Calculation of Damage”(QD) method groups had a minor difference with the results of the SPECTER code and NRT model. The maximum radiation damage rate calculated for the graphite present in the TRR core was 1.567 9 10^-8 dpa/s. Finally, hydrogen retention was calculated as a function of the irradiation time.展开更多
This paper presents the determination of the fuel burnup distribution of the Dalat nuclear research reactor(DNRR) using a method of measurements at subcritical conditions. The method is based on the assumption of line...This paper presents the determination of the fuel burnup distribution of the Dalat nuclear research reactor(DNRR) using a method of measurements at subcritical conditions. The method is based on the assumption of linear dependence of the reactivity on the burnup of fuel bundles and the measurements at subcritical conditions.The measurements were taken for seven selected fuel bundles in two different measuring sequences. The measured burnup values have also been compared with the calculations for verifying the method and the measurement procedure. The results obtained with the three detectors have a good agreement with each other with a discrepancy less than 1.0%. The errors of the measured burnup values are within 6%. Comparison between the calculated and measured burnup values shows that the discrepancy of the C/E ratio is within 9% compared to unity. The results indicate that the method of measurements at subcritical conditions could be well applied to determine the relative burnup distribution of the DNRR.展开更多
Safety systems, built on state-of-the-art technology, are essential for achieving acceptable levels of plant safety to minimize hazards to the reactor and the general public. The second shutdown system(SSS) as an engi...Safety systems, built on state-of-the-art technology, are essential for achieving acceptable levels of plant safety to minimize hazards to the reactor and the general public. The second shutdown system(SSS) as an engineered safety feature and a part of the reactor protection system(RPS) is a means for rapidly shutting down a nuclear reactor, keeping it in a subcritical state and serving as a backup to the first shutdown system(FSS). In this research, one SSS with two types of optimum chamber designs is proposed that take into account the main current characteristic features of the Tehran research reactor with improvements over earlier designs. They are based on a liquid neutron absorber injection that is preferably different, diverse, and independent from the FSS based on the rod drop mechanism. The major design characteristics of this SSS with two different chambers were investigated using MCNPX 2.6.0 code. The performed calculations showed that the designed SSS is a reliable shutdown system, assuring an appropriate shutdown margin and injection time, with no significant effects on the effective delayed neutron fraction while causing minimal variations to the core structure. Further, the reasonable financial cost and the prolongation of the operation cycle are additional advantages of this design.展开更多
The exact calculation of point kinetic parameters is very important in nuclear reactor safety assessment, and most sophisticated safety codes such as RELAP5, PARCS,DYN3D, and PARET are using these parameters in their ...The exact calculation of point kinetic parameters is very important in nuclear reactor safety assessment, and most sophisticated safety codes such as RELAP5, PARCS,DYN3D, and PARET are using these parameters in their dynamic models. These parameters include effective delayed neutron fractions as well as mean generation time.These parameters are adjoint-weighted, and adjoint flux is employed as a weighting function in their evaluation.Adjoint flux calculation is an easy task for most of deterministic codes, but its evaluation is cumbersome for Monte Carlo codes. However, in recent years, some sophisticated techniques have been proposed for Monte Carlo-based point kinetic parameters calculation without any need of adjoint flux. The most straightforward scheme is known as the ‘‘prompt method'' and has been used widely in literature. The main objective of this article is dedicated to point kinetic parameters calculation in Tehran research reactor(TRR) using deterministic as well as probabilistic techniques. WIMS-D5B and CITATION codes have been used in deterministic calculation of forward and adjoint fluxes in the TRR core. On the other hand, the MCNP Monte Carlo code has been employed in the ‘‘prompt method''scheme for effective delayed neutron fraction evaluation.Deterministic results have been cross-checked with probabilistic ones and validated with SAR and experimental data. In comparison with experimental results, the relativedifferences of deterministic as well as probabilistic methods are 7.6 and 3.2%, respectively. These quantities are10.7 and 6.4%, respectively, in comparison with SAR report.展开更多
This research presents neutronic calculations for heavy water research reactor core substituting hydride fuel for uranium dioxide fuel. The aim of this research is feasibility analysis of reactor utilization with its ...This research presents neutronic calculations for heavy water research reactor core substituting hydride fuel for uranium dioxide fuel. The aim of this research is feasibility analysis of reactor utilization with its original design using a new proposed fuel and changing the coolant and moderator circuit to light water. The required group constants for the CITATION code will be calculated using WIMSD-4 code. Neutronic calculations such as multiplication factors, radial and axial power peaking factor and fuel burn-up calculations are carried out by the CITATION code.展开更多
The current status and development history of domestic and abroad research reactors (RRs) are mentioned.The representative RRs and their respective technology characteristics are introduced.The utilizations of China...The current status and development history of domestic and abroad research reactors (RRs) are mentioned.The representative RRs and their respective technology characteristics are introduced.The utilizations of China's RRs,mainly included as nuclear engineering technology,basic research applications of nuclear technology,teaching and personnel training,are explained.展开更多
In this study, the variation of the temperature distribution of the fuel plate in Tehran Research Reactor core was studied in case of coolant channels blockage. While the experimental method is not possible, both the ...In this study, the variation of the temperature distribution of the fuel plate in Tehran Research Reactor core was studied in case of coolant channels blockage. While the experimental method is not possible, both the analytical and simulation methods were used to obtain the more reliable data. The results show that one channel blockage will increase the fuel temperature to about 100%, but it does not lead to clad melt down still. With further calculation and simulation it is understood that if the coolant velocity drops to 90% of its nominal value, it may causes the clad melting down. At least two channels with complete blockage even at the positions far from the core center can also melt down the clad.展开更多
A design for instantaneous neutron flux signal acquisition system is being carried out for reactivity measurement of the nuclear research reactor. It is a computer-based digital data acquisition system that can perfor...A design for instantaneous neutron flux signal acquisition system is being carried out for reactivity measurement of the nuclear research reactor. It is a computer-based digital data acquisition system that can perform continuous monitor and measurement of reactivity inserted into or removed from the research reactor. The acquisition system accomplishes with two major parts. The first part is an interfacing PCI based data acquisition card and the corresponding driver software intending to on-line acquisition of neutron flux signals from plant instrumentation channel. The second part incorporates the high-level Visual Basic real time program, indigenously developed for computation of reactivity by the solution of neutron point kinetic equations and other relevant functional modules like input file logging, reactivity calculation, graphics demonstration etc.展开更多
The activity concentration of natural and fallout radionuclides in the soil at some selected Thanas around the TRIGA Mark-II Research Reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka were measured ...The activity concentration of natural and fallout radionuclides in the soil at some selected Thanas around the TRIGA Mark-II Research Reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka were measured by using a high purity germanium detector (HPGe). The study revealed that only natural radionuclides were present in the samples and no trace of any artificial radionuclide was found. The average activity concentration of 238U, 232Th and 40K were found to be 37.8 ± 5.6 Bq.kg-1, 58.2 ± 11.0 Bq.kg-1 and 790.8 ± 153.4 Bq.kg-1 respectively. The radium equivalent activity (Req), absorbed dose rate (D), external radiation hazard index (Hex) and internal radiation hazard index (Hin) were also calculated to find out the probable radiological hazard of the natural radioactivity.展开更多
External filtered neutron beams have been developed at the horizontal radial channels No. 4 of Dalat research reactor. In the material composition of the neutron filters, the primary material components of Iron, Alumi...External filtered neutron beams have been developed at the horizontal radial channels No. 4 of Dalat research reactor. In the material composition of the neutron filters, the primary material components of Iron, Aluminum, Nickel and Vanadium are used to obtain the mono-energetic neutron beams of 24 and 59 keV, with low level of Gamma and slow neutron background. A computer code and Monte-Carlo simulation technique were applied to optimize the filter configurations and to deduce the neutron energy distributions in the filtered beams. A hydrogen-filled proton recoil detector and the activation method with Gold foils were used to measure the neutron energy spectrum and flux of each beam at sample position. The results of experimental neutron fluxes are 6.1 × 105 and 5.3 × 105 n/cm2/s for 24 and 59 keV beams, respectively.展开更多
This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 ...This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 to 24 fuel assemblies. A realistic analysis needs the knowledge of the actual operation conditions (heat flow, flow rates) beyond the geometric data and the uncertainties associated with manufacturing and measures. A dummy fuel assembly was designed and constructed to measure the actual flow rate through the core fuel assemblies and its pressure drop. First results showed that the flow distribution over the core is nearly uniform. Nevertheless, the values are below than the calculated ones and the core bypass flow rate is greater than those estimated previously. Based on this, several activities were performed to identify and reduce the bypass flow, such as reduction of the flow rate through the sample irradiators, closing some unnecessary secondary holes on the matrix plate, improvement in the primary flow rate system and better fit of the core components on the matrix plate. A sub-aquatic visual system was used as an important tool to detect some bypass flow path. After these modifications, the fuel assemblies flow rate increased about 13%. Additional tests using the dummy fuel assembly were carried out to measure the internal flow distribution among the rectangular channels. The results showed that the flow rate through the outer channels is 10% - 15% lower than the internal ones. The flow rate in the channel formed between two adjacent fuel assemblies is an estimated parameter and it is difficult to measure because this is an open channel. A new thermal hydraulic analysis of the outermost plates of the fuel assemblies takes into account all this information. Then, a fuel design modification was proposed with the reduction of 50% in the uranium quantity in the outermost fuel plates. In order to avoid the oxidation of the outermost plates by high temperature, low flow rate, a reduction of 50% in the uranium density in the same ones was shown to be adequate to solve the problem.展开更多
The demand for nuclear fuel for research reactors is rising worldwide. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing dem...The demand for nuclear fuel for research reactors is rising worldwide. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing demand efficiently and safely. We proposed a specific procedure for increasing production capacity. That procedure was tested with data from a real plant, which produces plate-type fuel elements loaded with LEU U3Si2-Al fuel. The test was made by means of discrete event simulation, and the results indicated the proposed procedure is efficient in raising production capacity.展开更多
Several fuel plants that supply nuclear research reactors need to increase their production capacity in order to meet the growing demand for this kind of nuclear fuel. After the enlargement of the production capacity ...Several fuel plants that supply nuclear research reactors need to increase their production capacity in order to meet the growing demand for this kind of nuclear fuel. After the enlargement of the production capacity of such plants, there will be the need of managing the new production level. That level is usually the industrial one, which poses challenges to the managerial staff. Such challenges come from the fact that several of those plants operate today on a laboratorial basis and do not carry inventory. The change to the industrial production pace asks for new actions regarding planning and control. The production process based on the hydrolysis of UF6 is not a frequent production route for nuclear fuel. Production planning and control of the industrial level of fuel production on that production route is a new field of studies. The approach of the paper consists in the creation of a mathematical linear model for minimization of costs. We also carried out a sensitivity analysis of the model. The results help in minimizing costs in different production schemes and show the need of inventory. The mathematical model is dynamic, so that it issues better results if performed monthly. The management team will therefore have a clearer view of the costs and of the new, necessary production and inventory levels.展开更多
High purity SiC crystal was used as a passive monitor to measure neutron irradiation temperature in the 49-2 research reactor.The SiC monitors were irradiated with fast neutrons at elevated temperatures to 3.2×10...High purity SiC crystal was used as a passive monitor to measure neutron irradiation temperature in the 49-2 research reactor.The SiC monitors were irradiated with fast neutrons at elevated temperatures to 3.2×10^(20)n/cm^(2).The isochronal and isothermal annealing behaviors of the irradiated SiC were investigated by x-ray diffraction and four-point probe techniques.Invisible point defects and defect clusters are found to be the dominating defect types in the neutron-irradiated SiC.The amount of defect recovery in SiC reaches a maximum value after isothermal annealing for 30 min.Based on the annealing temperature dependences of both lattice swelling and material resistivity,the irradiation temperature of the SiC monitors is determined to be~410℃,which is much higher than the thermocouple temperature of 275℃ recorded during neutron irradiation.The possible reasons for the difference are carefully discussed.展开更多
As a main channel for the foreign economic cooperation of China nuclear industry,China Zhongyuan Engineering Corporation (CZEC) has been constantly engaged in technical modifications and management innovations in its ...As a main channel for the foreign economic cooperation of China nuclear industry,China Zhongyuan Engineering Corporation (CZEC) has been constantly engaged in technical modifications and management innovations in its exporting nuclear reactor projects.In the implementation of heavy water research reactor contract in Algeria,CZEC had established a complete and adequate design standards system in compliance with the international standards,and made significant modifications to the reference reactor in the aspects of reactor power and reactor safety,solved quite some technical issues which affected the reactor technical performance.The modifications and improvements enabled the technical parameters,safety features,reactor multipurpose application to attain to the advanced level in the world.In the 300 MWe PWR NPPs in Pakistan,safety features had been updated in line with upgrading regulatory requisites.The design philosophy and technology application demonstrated CZEC's creation and innovation on basis of constant safety enhancement of nuclear power projects.Efforts had also been made by CZEC in promoting China made equipment items and components exportation.展开更多
Gas irradiation in research nuclear reactors is an important way to produce radionuclides. Although some nuclear reactors centers offer this type of service, there are few publications about capsules to irradiation of...Gas irradiation in research nuclear reactors is an important way to produce radionuclides. Although some nuclear reactors centers offer this type of service, there are few publications about capsules to irradiation of gaseous samples. This paper describes a method to fabricate and evaluate aluminum capsules to irradiate gaseous samples in nuclear reactor. A semi-circular slotted die from a hydraulic presshead was modified to seal aluminum tubes. The aluminum capsules were subjected to leak detection tests, which demonstrated the accordance with standard ISO 9978.展开更多
IEA-R1 nuclear reactor operation has the routine to control uranium content in pool water to be in trace range below 50 μg/L. There are several routes to determine the uranium trace content in water in the lite...IEA-R1 nuclear reactor operation has the routine to control uranium content in pool water to be in trace range below 50 μg/L. There are several routes to determine the uranium trace content in water in the literature;voltammetry has been systematically employed. In the present study, the chosen chemical determination of uranium traces used the voltammetric method known as AdCSV (adsorptive cathodic stripping voltammetry). This technique, based on mercury voltammetry, is an adequate methodology to determine uranium traces. The chloranilic acid [CAA] (2,5-dichloro-3,6-dihydroxy-1,4-benzo-quinone) is indicated as chelating agent. The redox reaction of UO2+2?with CAA is sensitive in the range of 2 2(CAA)2] reduction potential. In this work, we present the uranium trace results for IEA-R1 reactor water, sampled after an operation routine shutdown. The uranium trace determination for IEA-R1 pool water showed content around 1 μg/L [U] with statistical significance. Therefore the IEA-R1-reactor-water purification showed to be adequate and safe.展开更多
During the past five decades, the TRIGA reactor Vienna has reached a top place in utilization among low power research reactors. This paper discussed the highlights of the major neutron physics experiments in the fiel...During the past five decades, the TRIGA reactor Vienna has reached a top place in utilization among low power research reactors. This paper discussed the highlights of the major neutron physics experiments in the field of neutron interferometry and ultra-small angle neutron scattering as well as in the field of radiochemistry, education and training and research in the field of nuclear safeguards and nuclear security. Potential further directions of research are outlined where the Atominstitut of Vienna might concentrate in future.展开更多
This work presents results on the commissioning of the new heat exchanger of the IEA-R1 nuclear reactor in the occasion of its operational power upgrade from 2 MW to 5 MW, in comparison to the values calculated in the...This work presents results on the commissioning of the new heat exchanger of the IEA-R1 nuclear reactor in the occasion of its operational power upgrade from 2 MW to 5 MW, in comparison to the values calculated in the project of IESA Design and Equipments Company. This reactor is a swimming pool type, light water moderated and with graphite reflectors, used for research purposes and medical radioisotopes production. During monitoring procedures, issues were observed on the reactor operation at 5 MW mainly due to the ageing of the reactor's oldest heat exchanger (TC-A) and excessive vibrations at high flow rates on the other installed heat exchanger (TC-B). So it was decided to provide a new IESA heat exchanger with 5 MW capacity to definitely substitute the TC-A heat exchanger. The results show that the IEA-R1 nuclear reactor can be operated safely and continuously at 5 MW with the new IESA heat exchanger.展开更多
文摘Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.
文摘Radiation damage is an important factor that must be considered while designing nuclear facilities and nuclear materials. In this study, radiation damage is investigated in graphite, which is used as a neutron reflector in the Tehran Research Reactor (TRR) core. Radiation damage is shown by displacement per atom (dpa) unit. A cross section of the material was created by using the SPECOMP code. The concentration of impurities present in the non-irradiated graphite was measured by using the ICP-AES method. In the present study the MCNPX code had identified the most sensitive location for radiation damage inside the reactor core. Subsequently, the radiation damage (spectral-averaged dpa values) in the aforementioned location was calculated by using the SPECTER, SRIM Monte Carlo codes, and Norgett, Robinson and Torrens (NRT) model. The results of “Ion Distribution and Quick Calculation of Damage”(QD) method groups had a minor difference with the results of the SPECTER code and NRT model. The maximum radiation damage rate calculated for the graphite present in the TRR core was 1.567 9 10^-8 dpa/s. Finally, hydrogen retention was calculated as a function of the irradiation time.
基金supported by National Foundation for Science and Technology Development(NAFOSTED)of Vietnam under Grant103.04-2016.30
文摘This paper presents the determination of the fuel burnup distribution of the Dalat nuclear research reactor(DNRR) using a method of measurements at subcritical conditions. The method is based on the assumption of linear dependence of the reactivity on the burnup of fuel bundles and the measurements at subcritical conditions.The measurements were taken for seven selected fuel bundles in two different measuring sequences. The measured burnup values have also been compared with the calculations for verifying the method and the measurement procedure. The results obtained with the three detectors have a good agreement with each other with a discrepancy less than 1.0%. The errors of the measured burnup values are within 6%. Comparison between the calculated and measured burnup values shows that the discrepancy of the C/E ratio is within 9% compared to unity. The results indicate that the method of measurements at subcritical conditions could be well applied to determine the relative burnup distribution of the DNRR.
文摘Safety systems, built on state-of-the-art technology, are essential for achieving acceptable levels of plant safety to minimize hazards to the reactor and the general public. The second shutdown system(SSS) as an engineered safety feature and a part of the reactor protection system(RPS) is a means for rapidly shutting down a nuclear reactor, keeping it in a subcritical state and serving as a backup to the first shutdown system(FSS). In this research, one SSS with two types of optimum chamber designs is proposed that take into account the main current characteristic features of the Tehran research reactor with improvements over earlier designs. They are based on a liquid neutron absorber injection that is preferably different, diverse, and independent from the FSS based on the rod drop mechanism. The major design characteristics of this SSS with two different chambers were investigated using MCNPX 2.6.0 code. The performed calculations showed that the designed SSS is a reliable shutdown system, assuring an appropriate shutdown margin and injection time, with no significant effects on the effective delayed neutron fraction while causing minimal variations to the core structure. Further, the reasonable financial cost and the prolongation of the operation cycle are additional advantages of this design.
文摘The exact calculation of point kinetic parameters is very important in nuclear reactor safety assessment, and most sophisticated safety codes such as RELAP5, PARCS,DYN3D, and PARET are using these parameters in their dynamic models. These parameters include effective delayed neutron fractions as well as mean generation time.These parameters are adjoint-weighted, and adjoint flux is employed as a weighting function in their evaluation.Adjoint flux calculation is an easy task for most of deterministic codes, but its evaluation is cumbersome for Monte Carlo codes. However, in recent years, some sophisticated techniques have been proposed for Monte Carlo-based point kinetic parameters calculation without any need of adjoint flux. The most straightforward scheme is known as the ‘‘prompt method'' and has been used widely in literature. The main objective of this article is dedicated to point kinetic parameters calculation in Tehran research reactor(TRR) using deterministic as well as probabilistic techniques. WIMS-D5B and CITATION codes have been used in deterministic calculation of forward and adjoint fluxes in the TRR core. On the other hand, the MCNP Monte Carlo code has been employed in the ‘‘prompt method''scheme for effective delayed neutron fraction evaluation.Deterministic results have been cross-checked with probabilistic ones and validated with SAR and experimental data. In comparison with experimental results, the relativedifferences of deterministic as well as probabilistic methods are 7.6 and 3.2%, respectively. These quantities are10.7 and 6.4%, respectively, in comparison with SAR report.
文摘This research presents neutronic calculations for heavy water research reactor core substituting hydride fuel for uranium dioxide fuel. The aim of this research is feasibility analysis of reactor utilization with its original design using a new proposed fuel and changing the coolant and moderator circuit to light water. The required group constants for the CITATION code will be calculated using WIMSD-4 code. Neutronic calculations such as multiplication factors, radial and axial power peaking factor and fuel burn-up calculations are carried out by the CITATION code.
文摘The current status and development history of domestic and abroad research reactors (RRs) are mentioned.The representative RRs and their respective technology characteristics are introduced.The utilizations of China's RRs,mainly included as nuclear engineering technology,basic research applications of nuclear technology,teaching and personnel training,are explained.
文摘In this study, the variation of the temperature distribution of the fuel plate in Tehran Research Reactor core was studied in case of coolant channels blockage. While the experimental method is not possible, both the analytical and simulation methods were used to obtain the more reliable data. The results show that one channel blockage will increase the fuel temperature to about 100%, but it does not lead to clad melt down still. With further calculation and simulation it is understood that if the coolant velocity drops to 90% of its nominal value, it may causes the clad melting down. At least two channels with complete blockage even at the positions far from the core center can also melt down the clad.
文摘A design for instantaneous neutron flux signal acquisition system is being carried out for reactivity measurement of the nuclear research reactor. It is a computer-based digital data acquisition system that can perform continuous monitor and measurement of reactivity inserted into or removed from the research reactor. The acquisition system accomplishes with two major parts. The first part is an interfacing PCI based data acquisition card and the corresponding driver software intending to on-line acquisition of neutron flux signals from plant instrumentation channel. The second part incorporates the high-level Visual Basic real time program, indigenously developed for computation of reactivity by the solution of neutron point kinetic equations and other relevant functional modules like input file logging, reactivity calculation, graphics demonstration etc.
文摘The activity concentration of natural and fallout radionuclides in the soil at some selected Thanas around the TRIGA Mark-II Research Reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka were measured by using a high purity germanium detector (HPGe). The study revealed that only natural radionuclides were present in the samples and no trace of any artificial radionuclide was found. The average activity concentration of 238U, 232Th and 40K were found to be 37.8 ± 5.6 Bq.kg-1, 58.2 ± 11.0 Bq.kg-1 and 790.8 ± 153.4 Bq.kg-1 respectively. The radium equivalent activity (Req), absorbed dose rate (D), external radiation hazard index (Hex) and internal radiation hazard index (Hin) were also calculated to find out the probable radiological hazard of the natural radioactivity.
文摘External filtered neutron beams have been developed at the horizontal radial channels No. 4 of Dalat research reactor. In the material composition of the neutron filters, the primary material components of Iron, Aluminum, Nickel and Vanadium are used to obtain the mono-energetic neutron beams of 24 and 59 keV, with low level of Gamma and slow neutron background. A computer code and Monte-Carlo simulation technique were applied to optimize the filter configurations and to deduce the neutron energy distributions in the filtered beams. A hydrogen-filled proton recoil detector and the activation method with Gold foils were used to measure the neutron energy spectrum and flux of each beam at sample position. The results of experimental neutron fluxes are 6.1 × 105 and 5.3 × 105 n/cm2/s for 24 and 59 keV beams, respectively.
文摘This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 to 24 fuel assemblies. A realistic analysis needs the knowledge of the actual operation conditions (heat flow, flow rates) beyond the geometric data and the uncertainties associated with manufacturing and measures. A dummy fuel assembly was designed and constructed to measure the actual flow rate through the core fuel assemblies and its pressure drop. First results showed that the flow distribution over the core is nearly uniform. Nevertheless, the values are below than the calculated ones and the core bypass flow rate is greater than those estimated previously. Based on this, several activities were performed to identify and reduce the bypass flow, such as reduction of the flow rate through the sample irradiators, closing some unnecessary secondary holes on the matrix plate, improvement in the primary flow rate system and better fit of the core components on the matrix plate. A sub-aquatic visual system was used as an important tool to detect some bypass flow path. After these modifications, the fuel assemblies flow rate increased about 13%. Additional tests using the dummy fuel assembly were carried out to measure the internal flow distribution among the rectangular channels. The results showed that the flow rate through the outer channels is 10% - 15% lower than the internal ones. The flow rate in the channel formed between two adjacent fuel assemblies is an estimated parameter and it is difficult to measure because this is an open channel. A new thermal hydraulic analysis of the outermost plates of the fuel assemblies takes into account all this information. Then, a fuel design modification was proposed with the reduction of 50% in the uranium quantity in the outermost fuel plates. In order to avoid the oxidation of the outermost plates by high temperature, low flow rate, a reduction of 50% in the uranium density in the same ones was shown to be adequate to solve the problem.
文摘The demand for nuclear fuel for research reactors is rising worldwide. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing demand efficiently and safely. We proposed a specific procedure for increasing production capacity. That procedure was tested with data from a real plant, which produces plate-type fuel elements loaded with LEU U3Si2-Al fuel. The test was made by means of discrete event simulation, and the results indicated the proposed procedure is efficient in raising production capacity.
文摘Several fuel plants that supply nuclear research reactors need to increase their production capacity in order to meet the growing demand for this kind of nuclear fuel. After the enlargement of the production capacity of such plants, there will be the need of managing the new production level. That level is usually the industrial one, which poses challenges to the managerial staff. Such challenges come from the fact that several of those plants operate today on a laboratorial basis and do not carry inventory. The change to the industrial production pace asks for new actions regarding planning and control. The production process based on the hydrolysis of UF6 is not a frequent production route for nuclear fuel. Production planning and control of the industrial level of fuel production on that production route is a new field of studies. The approach of the paper consists in the creation of a mathematical linear model for minimization of costs. We also carried out a sensitivity analysis of the model. The results help in minimizing costs in different production schemes and show the need of inventory. The mathematical model is dynamic, so that it issues better results if performed monthly. The management team will therefore have a clearer view of the costs and of the new, necessary production and inventory levels.
文摘High purity SiC crystal was used as a passive monitor to measure neutron irradiation temperature in the 49-2 research reactor.The SiC monitors were irradiated with fast neutrons at elevated temperatures to 3.2×10^(20)n/cm^(2).The isochronal and isothermal annealing behaviors of the irradiated SiC were investigated by x-ray diffraction and four-point probe techniques.Invisible point defects and defect clusters are found to be the dominating defect types in the neutron-irradiated SiC.The amount of defect recovery in SiC reaches a maximum value after isothermal annealing for 30 min.Based on the annealing temperature dependences of both lattice swelling and material resistivity,the irradiation temperature of the SiC monitors is determined to be~410℃,which is much higher than the thermocouple temperature of 275℃ recorded during neutron irradiation.The possible reasons for the difference are carefully discussed.
文摘As a main channel for the foreign economic cooperation of China nuclear industry,China Zhongyuan Engineering Corporation (CZEC) has been constantly engaged in technical modifications and management innovations in its exporting nuclear reactor projects.In the implementation of heavy water research reactor contract in Algeria,CZEC had established a complete and adequate design standards system in compliance with the international standards,and made significant modifications to the reference reactor in the aspects of reactor power and reactor safety,solved quite some technical issues which affected the reactor technical performance.The modifications and improvements enabled the technical parameters,safety features,reactor multipurpose application to attain to the advanced level in the world.In the 300 MWe PWR NPPs in Pakistan,safety features had been updated in line with upgrading regulatory requisites.The design philosophy and technology application demonstrated CZEC's creation and innovation on basis of constant safety enhancement of nuclear power projects.Efforts had also been made by CZEC in promoting China made equipment items and components exportation.
文摘Gas irradiation in research nuclear reactors is an important way to produce radionuclides. Although some nuclear reactors centers offer this type of service, there are few publications about capsules to irradiation of gaseous samples. This paper describes a method to fabricate and evaluate aluminum capsules to irradiate gaseous samples in nuclear reactor. A semi-circular slotted die from a hydraulic presshead was modified to seal aluminum tubes. The aluminum capsules were subjected to leak detection tests, which demonstrated the accordance with standard ISO 9978.
文摘IEA-R1 nuclear reactor operation has the routine to control uranium content in pool water to be in trace range below 50 μg/L. There are several routes to determine the uranium trace content in water in the literature;voltammetry has been systematically employed. In the present study, the chosen chemical determination of uranium traces used the voltammetric method known as AdCSV (adsorptive cathodic stripping voltammetry). This technique, based on mercury voltammetry, is an adequate methodology to determine uranium traces. The chloranilic acid [CAA] (2,5-dichloro-3,6-dihydroxy-1,4-benzo-quinone) is indicated as chelating agent. The redox reaction of UO2+2?with CAA is sensitive in the range of 2 2(CAA)2] reduction potential. In this work, we present the uranium trace results for IEA-R1 reactor water, sampled after an operation routine shutdown. The uranium trace determination for IEA-R1 pool water showed content around 1 μg/L [U] with statistical significance. Therefore the IEA-R1-reactor-water purification showed to be adequate and safe.
文摘During the past five decades, the TRIGA reactor Vienna has reached a top place in utilization among low power research reactors. This paper discussed the highlights of the major neutron physics experiments in the field of neutron interferometry and ultra-small angle neutron scattering as well as in the field of radiochemistry, education and training and research in the field of nuclear safeguards and nuclear security. Potential further directions of research are outlined where the Atominstitut of Vienna might concentrate in future.
文摘This work presents results on the commissioning of the new heat exchanger of the IEA-R1 nuclear reactor in the occasion of its operational power upgrade from 2 MW to 5 MW, in comparison to the values calculated in the project of IESA Design and Equipments Company. This reactor is a swimming pool type, light water moderated and with graphite reflectors, used for research purposes and medical radioisotopes production. During monitoring procedures, issues were observed on the reactor operation at 5 MW mainly due to the ageing of the reactor's oldest heat exchanger (TC-A) and excessive vibrations at high flow rates on the other installed heat exchanger (TC-B). So it was decided to provide a new IESA heat exchanger with 5 MW capacity to definitely substitute the TC-A heat exchanger. The results show that the IEA-R1 nuclear reactor can be operated safely and continuously at 5 MW with the new IESA heat exchanger.