This paper analyzed necessity and laws of natural and cultural resource consumption and creation activities as a branch of economics or research direction, proposed such basic frameworks of landscape economics such as...This paper analyzed necessity and laws of natural and cultural resource consumption and creation activities as a branch of economics or research direction, proposed such basic frameworks of landscape economics such as connotations, basic problems and research methods on the basis of sorting out literature. Landscape economics is a social science focusing on the public preferences for natural and humanistic landscapes, and the preference evolution laws, economic laws of landscape resource consumption and creation activities. The basic problems include evaluation of landscape resource value, optimal utilization of landscape resources, landscape resource development and protection policies, formation and creation of diversified landscape structure. The research methods include investigation of consumers' willingness, experiment and behavioral economics, logical reasoning, and case study.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide b...Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.展开更多
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ...In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
In this paper,two-grid immersed finite element (IFE) algorithms are proposed and analyzed for semi-linear interface problems with discontinuous diffusion coefficients in two dimension.Because of the advantages of fini...In this paper,two-grid immersed finite element (IFE) algorithms are proposed and analyzed for semi-linear interface problems with discontinuous diffusion coefficients in two dimension.Because of the advantages of finite element (FE) formulation and the simple structure of Cartesian grids,the IFE discretization is used in this paper.Two-grid schemes are formulated to linearize the FE equations.It is theoretically and numerically illustrated that the coarse space can be selected as coarse as H =O(h^1/4)(or H =O(h^1/8)),and the asymptotically optimal approximation can be achieved as the nonlinear schemes.As a result,we can settle a great majority of nonlinear equations as easy as linearized problems.In order to estimate the present two-grid algorithms,we derive the optimal error estimates of the IFE solution in the L^p norm.Numerical experiments are given to verify the theorems and indicate that the present two-grid algorithms can greatly improve the computing efficiency.展开更多
Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed...Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed finite ele- ment equations,thus resulting in a reduction by half in the dimension of final governing equations.Second,an algorithm composed of contact condition probes and elasto-plastic iterations is utilized to solve the governing equation,which distinguishes two kinds of nonlinearities,and makes the solution unique.In addition,Positive-Negative Sequence Modifica- tion Method is used to condense the finite element equations of each substructure and an analytical integration is intro- duced to determine the elasto-plastic status after each time step or each iteration,hence the computational efficiency is en- hanced to a great extent.Finally,several test and practical examples are pressented showing the validity and versatility of these methods and algorithms.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body...In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.展开更多
In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear conve...In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.展开更多
By presenting a general framework, some regularization methods for solving linear ill-posed problems are considered in a unified manner. Applications to some specific approaches are illustrated.
This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several mo...This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several modifications are presented.Numerical examples show the modified algorithms always work and can greatly reduce the computational costs.展开更多
Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal co...Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal control problems which contain a linear elliptic boundary value problem as a state equation, control in the righthand side of the equation or in the boundary conditions, and point-wise constraints for both state and control functions. The convergence of the constructed iterative methods is proved, the implementation problems are discussed, and the numerical comparison of the methods is executed.展开更多
With constant deepening of the reform and opening-up,national economic system has changed from planned economy to market economy,and rural survey and statistics remain in a difficult transition period. In this period,...With constant deepening of the reform and opening-up,national economic system has changed from planned economy to market economy,and rural survey and statistics remain in a difficult transition period. In this period,China needs transforming original statistical mode according to market economic system. All levels of government should report and submit a lot and increasing statistical information. Besides,in this period,townships,villages and counties are faced with old and new conflicts. These conflicts perplex implementation of rural statistics and survey and development of rural statistical undertaking,and also cause researches and thinking of reform of rural statistical and survey methods.展开更多
In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties...In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties. In this paper, we extend these results to general linear methods and to more generalproblem class Kστ. The concepts of (k, p, q)-secondary stability and (k, p. q)-secondary stability are introduced, and the criteria of secondary algebraic stability are also established. The criteria relax algebraicstability conditions while retaining the virtues of a nonlinear test problem.展开更多
Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to e...Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to enhance the speed of the convergence and reduce computational cost,the algorithms used a new step size and a cutting hyperplane.The first algorithm was proved to be weak convergence,while the second algorithm used a modified version of Halpern iteration to obtain strong convergence.Finally,numerical experiments on several specific problems and comparisons with other algorithms verified the superiority of the proposed algorithms.展开更多
Accelerated proximal gradient methods have recently been developed for solving quasi-static incremental problems of elastoplastic analysis with some different yield criteria.It has been demonstrated through numerical ...Accelerated proximal gradient methods have recently been developed for solving quasi-static incremental problems of elastoplastic analysis with some different yield criteria.It has been demonstrated through numerical experiments that these methods can outperform conventional optimization-based approaches in computational plasticity.However,in literature these algorithms are described individually for specific yield criteria,and hence there exists no guide for application of the algorithms to other yield criteria.This short paper presents a general form of algorithm design,independent of specific forms of yield criteria,that unifies the existing proximal gradient methods.Clear interpretation is also given to each step of the presented general algorithm so that each update rule is linked to the underlying physical laws in terms of mechanical quantities.展开更多
In this paper we develop multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for ill-posed problems. The algorithm and its convergence analysis are pr...In this paper we develop multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for ill-posed problems. The algorithm and its convergence analysis are presented in an abstract framework.展开更多
文摘This paper analyzed necessity and laws of natural and cultural resource consumption and creation activities as a branch of economics or research direction, proposed such basic frameworks of landscape economics such as connotations, basic problems and research methods on the basis of sorting out literature. Landscape economics is a social science focusing on the public preferences for natural and humanistic landscapes, and the preference evolution laws, economic laws of landscape resource consumption and creation activities. The basic problems include evaluation of landscape resource value, optimal utilization of landscape resources, landscape resource development and protection policies, formation and creation of diversified landscape structure. The research methods include investigation of consumers' willingness, experiment and behavioral economics, logical reasoning, and case study.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.
文摘In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
基金Project supported by the National Natural Science Foundation of China(Nos.11671157 and11826212)
文摘In this paper,two-grid immersed finite element (IFE) algorithms are proposed and analyzed for semi-linear interface problems with discontinuous diffusion coefficients in two dimension.Because of the advantages of finite element (FE) formulation and the simple structure of Cartesian grids,the IFE discretization is used in this paper.Two-grid schemes are formulated to linearize the FE equations.It is theoretically and numerically illustrated that the coarse space can be selected as coarse as H =O(h^1/4)(or H =O(h^1/8)),and the asymptotically optimal approximation can be achieved as the nonlinear schemes.As a result,we can settle a great majority of nonlinear equations as easy as linearized problems.In order to estimate the present two-grid algorithms,we derive the optimal error estimates of the IFE solution in the L^p norm.Numerical experiments are given to verify the theorems and indicate that the present two-grid algorithms can greatly improve the computing efficiency.
基金The Project Supported by National Natural Science Foundation of China
文摘Several effective numerical methods for solving the elasto-plastic contact problems with friction are pres- ented.First,a direct substitution method is employed to impose the contact constraint conditions on condensed finite ele- ment equations,thus resulting in a reduction by half in the dimension of final governing equations.Second,an algorithm composed of contact condition probes and elasto-plastic iterations is utilized to solve the governing equation,which distinguishes two kinds of nonlinearities,and makes the solution unique.In addition,Positive-Negative Sequence Modifica- tion Method is used to condense the finite element equations of each substructure and an analytical integration is intro- duced to determine the elasto-plastic status after each time step or each iteration,hence the computational efficiency is en- hanced to a great extent.Finally,several test and practical examples are pressented showing the validity and versatility of these methods and algorithms.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.
基金supported by the US ARO grants 49308-MA and 56349-MAthe US AFSOR grant FA9550-06-1-024+1 种基金he US NSF grant DMS-0911434the State Key Laboratory of Scientific and Engineering Computing of Chinese Academy of Sciences during a visit by Z.Li between July-August,2008.
文摘In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.
基金the NSFC grant 11871428the Nature Science Research Program for Colleges and Universities of Jiangsu Province grant 20KJB110011Qiang Zhang:Research supported by the NSFC grant 11671199。
文摘In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.
文摘By presenting a general framework, some regularization methods for solving linear ill-posed problems are considered in a unified manner. Applications to some specific approaches are illustrated.
基金Project supported by the Key Disciplines of Shanghai Municipality (Grant No.S30104)the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several modifications are presented.Numerical examples show the modified algorithms always work and can greatly reduce the computational costs.
文摘Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal control problems which contain a linear elliptic boundary value problem as a state equation, control in the righthand side of the equation or in the boundary conditions, and point-wise constraints for both state and control functions. The convergence of the constructed iterative methods is proved, the implementation problems are discussed, and the numerical comparison of the methods is executed.
基金Supported by Project of Business Management Cultivation Discipline in Commerce Department of Rongchang Campus,Southwest University
文摘With constant deepening of the reform and opening-up,national economic system has changed from planned economy to market economy,and rural survey and statistics remain in a difficult transition period. In this period,China needs transforming original statistical mode according to market economic system. All levels of government should report and submit a lot and increasing statistical information. Besides,in this period,townships,villages and counties are faced with old and new conflicts. These conflicts perplex implementation of rural statistics and survey and development of rural statistical undertaking,and also cause researches and thinking of reform of rural statistical and survey methods.
文摘In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties. In this paper, we extend these results to general linear methods and to more generalproblem class Kστ. The concepts of (k, p, q)-secondary stability and (k, p. q)-secondary stability are introduced, and the criteria of secondary algebraic stability are also established. The criteria relax algebraicstability conditions while retaining the virtues of a nonlinear test problem.
文摘Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to enhance the speed of the convergence and reduce computational cost,the algorithms used a new step size and a cutting hyperplane.The first algorithm was proved to be weak convergence,while the second algorithm used a modified version of Halpern iteration to obtain strong convergence.Finally,numerical experiments on several specific problems and comparisons with other algorithms verified the superiority of the proposed algorithms.
文摘Accelerated proximal gradient methods have recently been developed for solving quasi-static incremental problems of elastoplastic analysis with some different yield criteria.It has been demonstrated through numerical experiments that these methods can outperform conventional optimization-based approaches in computational plasticity.However,in literature these algorithms are described individually for specific yield criteria,and hence there exists no guide for application of the algorithms to other yield criteria.This short paper presents a general form of algorithm design,independent of specific forms of yield criteria,that unifies the existing proximal gradient methods.Clear interpretation is also given to each step of the presented general algorithm so that each update rule is linked to the underlying physical laws in terms of mechanical quantities.
基金Natural Science Foundation of China under grants 10371137 and 10201034 the Foundation of Doctoral Program of National Higher Education of China under grant 20030558008 Guangdong Provincial Natural Science Foundation of China under grant 1011170 the Foundation of Zhongshan University Advanced Research Center.
文摘In this paper we develop multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for ill-posed problems. The algorithm and its convergence analysis are presented in an abstract framework.