Cooperation of multi-domain massively parallel processor systems in computing grid environment provides new opportunities for multisite job scheduling. At the same time, in the area of co-allocation, heterogeneity, ne...Cooperation of multi-domain massively parallel processor systems in computing grid environment provides new opportunities for multisite job scheduling. At the same time, in the area of co-allocation, heterogeneity, network adaptability and scalability raise the challenge for the international design of multisite job scheduling models and algorithms. It presents multisite job scheduling schema through the introduction of multisite job scheduling model and the performance model under the grid environment. It introduces two job multisite and cooperative scheduling models and algorithms with the core of the optimal and greedy-heuristic resource selection strategies. Meanwhile, compared with single and multisite cooperative scheduling models and algorithms introduced by Sabin, Yahyapour and other persons, the validity and advance of the scheduling model and the performance model herein are proved.展开更多
基金This work was supported in part by the National Natural Science Foundation of China (Grant No. 90412001) the National Grand Fundamental Research 973 Program of China (Grant No. G2005CB321806).
文摘Cooperation of multi-domain massively parallel processor systems in computing grid environment provides new opportunities for multisite job scheduling. At the same time, in the area of co-allocation, heterogeneity, network adaptability and scalability raise the challenge for the international design of multisite job scheduling models and algorithms. It presents multisite job scheduling schema through the introduction of multisite job scheduling model and the performance model under the grid environment. It introduces two job multisite and cooperative scheduling models and algorithms with the core of the optimal and greedy-heuristic resource selection strategies. Meanwhile, compared with single and multisite cooperative scheduling models and algorithms introduced by Sabin, Yahyapour and other persons, the validity and advance of the scheduling model and the performance model herein are proved.