The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high...The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.展开更多
It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicti...It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.展开更多
The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil produ...The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.展开更多
The synsedimentary faults and basin-marginal fans located in the central part of the deep-water area of the early Oligocene Qiongdongnan Basin have been investigated using seismic profiles,boreholes,and well-log data....The synsedimentary faults and basin-marginal fans located in the central part of the deep-water area of the early Oligocene Qiongdongnan Basin have been investigated using seismic profiles,boreholes,and well-log data.Through the formations of the characterized paleogeomorphology,such as transverse anticlines,fault ditches,and step-fault belts,the synsedimentary faults are known to have controlled the development position,distribution direction,and extension scales of the basin-marginal fans.For example,at the pitching ends of two adjacent faults,transverse anticlines developed,which controlled the development positions and distributions of the fans.During the early Oligocene,the faults controlled the subsidence center,and fault ditches were formed at the roots of the faults.In the surrounding salient or low salient areas,which were exposed as provenance areas during early Oligocene,the fault ditches acted as the source channels and determined the flow paths of the clastics,where incised valley fills were obviously developed.The fault ditches which developed in the sedimentary basins were able to capture the drainage systems and influenced the distributions of the fans.The large boundary faults and the secondary faults generated two fault terraces and formed step-fault belts.The first fault terrace caused the clastics to be unloaded.As a result,fans were formed at the entrance to the basin.Then,the second fault terrace caused the fans to move forward,with the fans developing in a larger extension scale.The results obtained in this study will potentially be beneficial in the future prospecting activities for reservoirs and coalmeasure source rocks in the basins located in the deep-water areas of the South China Sea.展开更多
High-yielding oil wells were recently found in the first member of Paleogene Shahejie Formation,the Binhai area of Qikou Sag,providing an example of medium-and deep-buried high-quality reservoirs in the central part o...High-yielding oil wells were recently found in the first member of Paleogene Shahejie Formation,the Binhai area of Qikou Sag,providing an example of medium-and deep-buried high-quality reservoirs in the central part of a faulted lacustrine basin.By using data of cores,cast thin sections,scanning electron microscope and physical property tests,the sedimentary facies,physical properties and main control factors of the high-quality reservoirs were analyzed.The reservoirs are identified as deposits of slump-type sub-lacustrine fans,which are marked by muddy fragments,slump deformation structure and Bouma sequences in sandstones.They present mostly medium porosity and low permeability,and slightly medium porosity and high permeability.They have primary intergranular pores,intergranular and intragranular dissolution pores in feldspar and detritus grains,and structural microcracks as storage space.The main factors controlling the high quality reservoirs are as follows:(1)Favorable sedimentary microfacies of main and proximal distributary gravity flow channels.The microfacies with coarse sediment were dominated by transportation and deposition of sandy debris flow,and the effect of deposition on reservoir properties decreases with the increase of depth.(2)Medium texture maturity.It is shown by medium-sorted sandstones that were formed by beach bar sediment collapsing and redepositing,and was good for the formation of the primary intergranular pores.(3)High content of intermediate-acid volcanic rock detritus.The reservoir sandstone has high content of detritus of various components,especially intermediate-acid volcanic rock detritus,which is good for the formation of dissolution pores.(4)Organic acid corrosion.It was attributed to hydrocarbon maturity during mesodiagenetic A substage.(5)Early-forming and long lasting overpressure.A large-scale overpressure compartment was caused by under-compaction and hydrocarbon generation pressurization related to thick deep-lacustrine mudstone,and is responsible for the preservation of abundant primary pores.(6)Regional transtensional tectonic action.It resulted in the structural microcracks.展开更多
The mechanisms causing quality variations and key control factors of submarine-fan reservoirs in the gas field X of the Rovuma Basin,East Africa are analyzed based on core and well-log data in this paper.Depositional ...The mechanisms causing quality variations and key control factors of submarine-fan reservoirs in the gas field X of the Rovuma Basin,East Africa are analyzed based on core and well-log data in this paper.Depositional fabric,lithofacies difference and characteristics of genetic units are the fundamental reasons of reservoir quality variations.In the case of weak cementation,porosity and permeability of submarine-fan reservoirs are controlled by grain sorting and clay content,respectively.Reservoir quality variations for 5 main lithofacies are related to variable depositional fabrics and calcite cementation.Among them,massive medium-coarse sandstones with weak cementation have the highest porosity and permeability,and coarser or finer sandstones have poorer reservoir quality.The existence of bottom current can develop laminated sandstones,improving the pore structure and physical properties greatly.Lithofacies vary among different types,locations and stages of genetic units,and they control the distribution patterns of submarine-fan reservoir quality:the physical properties of channel shaft or lobe main body are better than those of the channel or lobe edge.The sandstone sorting and physical properties are gradually improved from near-source to far-source.When multi-stage sand bodies are superimposed,the sand-mud ratio in the later stage is higher than that in the earlier stage,making the physical properties get better in the later stage.展开更多
The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these ...The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these images are in the public domain, there has not been any systematic compilation of configurations of density plumes associated with various sedimentary environments and processes. This article, based on 45 case studies covering 21 major rivers(e.g., Amazon, Betsiboka, Congo [Zaire], Copper, Hugli [Ganges], Mackenzie, Mississippi, Niger, Nile, Rhone, Rio de la Plata, Yellow, Yangtze, Zambezi, etc.) and six different depositional environments(i.e., marine, lacustrine, estuarine, lagoon, bay, and reef), is the first attempt in illustrating natural variability of configurations of density plumes in modern environments. There are, at least, 24 configurations of density plumes. An important finding of this study is that density plumes are controlled by a plethora of 18 oceanographic, meteorological, and other external factors. Examples are: 1) Yellow River in China by tidal shear front and by a change in river course; 2) Yangtze River in China by shelf currents and vertical mixing by tides in winter months; 3) Rio de la Plata Estuary in Argentina and Uruguay by Ocean currents; 4) San Francisco Bay in California by tidal currents; 5) Gulf of Manner in the Indian Ocean by monsoonal currents; 6) Egypt in Red Sea by Eolian dust; 7) U.S. Atlantic margin by cyclones; 8) Sri Lanka by tsunamis; 9) Copper River in Alaska by high-gradient braid delta; 10) Lake Erie by seiche; 11) continental margin off Namibia by upwelling; 12) Bering Sea by phytoplankton; 13) the Great Bahama Bank in the Atlantic Ocean by fish activity; 14) Indonesia by volcanic activity; 15) Greenland by glacial melt; 16) South Pacific Ocean by coral reef; 17) Carolina continental Rise by pockmarks; and 18) Otsuchi Bay in Japan by internal bore. The prevailing trend in promoting a single type of river-flood triggered hyperpycnal flow is flawed because there are 16 types of hyperpycnal flows. River-flood derived hyperpycnal flows are muddy in texture and they occur close to the shoreline in inner shelf environments. Hyperpycnal flows are not viable transport mechanisms of sand and gravel across the shelf into the deep sea. The available field observations suggest that they do not form meter-thick sand layers in deep water settings. For the above reasons, river-flood triggered hyperpycnites are considered unsuitable for serving as petroleum reservoirs in deep-water environments until proven otherwise.展开更多
The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, g...The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions.展开更多
Terminal fans have formed the sedimentary system of the 2+3 sands of the upper second member, Shahejie formation in the west of the Pucheng Oilfield, Bohai Bay Basin, East China. Based on well logging data and physic...Terminal fans have formed the sedimentary system of the 2+3 sands of the upper second member, Shahejie formation in the west of the Pucheng Oilfield, Bohai Bay Basin, East China. Based on well logging data and physical properties of the reservoir beds, the 2+3 sands were divided into 16 sublayers. The heterogeneity of reservoir beds and distribution of interlayers and seal layers in the 2+3 sands were investigated. The intra-layer heterogeneity and inter-layer heterogeneity primarily belong to the severely heterogeneous classification. The spatial differentiation of sedimentary microfacies resulted in a change of reservoir bed heterogeneity, strong in the middle and southern parts, weak in the northern part. Spatial distribution of interlayers and seal layers is dominated by sedimentary microfacies, and they are thick in north-eastern and middle parts, thin in the south-western part.展开更多
The Ledong-30 area is located in the southern part of the central depression of the Yinggehai basin, where the exploration activity aims to gas in the middle and deep strata is started lately. The previous studies on ...The Ledong-30 area is located in the southern part of the central depression of the Yinggehai basin, where the exploration activity aims to gas in the middle and deep strata is started lately. The previous studies on the sedimentary system and main controlling factors of reservoir formation are mainly focused on the middle and shallow strata above the Huangliu Formation. Based on a fine interpretation of seismic data, the sedimentary characteristics, internal structures, and distribution rules of submarine fans and gravity flow channels in the Ledong-30 area are analyzed in this paper. In addition, the dynamic migration processes of their planar distribution and the vertical evolution law (vertical sequence combinations and superposition features of turbidity events) are also addressed. At last, the internal structural characteristics of the gravity flow system and comprehensive formation mechanisms of the large-scale gravity flow sediments (turbidities fans) are also been analyzed, which is helpful for the prediction of favorable reservoir distribution. The results can be used directly to guide oil and gas exploration in the Ledong area of the Yinggehai basin.展开更多
Sublacustrine fan is an important element in continental lacustrine basins and is significant for reservoir exploration. Oil and gas resources have been found in the sublacustrine fan sandstone reservoirs of the Paleo...Sublacustrine fan is an important element in continental lacustrine basins and is significant for reservoir exploration. Oil and gas resources have been found in the sublacustrine fan sandstone reservoirs of the Paleogene Dongying Formation in the Bohai Sea. In this study, the characteristics of the sublacustrine fan reservoirs and the controlling factors are studied using information from logging, cores, physical properties,casting thin sections, X-ray diffraction of clay minerals, vitrinite reflectance, rock pyrolysis, manometry data,and 3D seismic data. The sublacustrine fans of the Dongying Formation in the LD10, QHD34, and BZ21 structures show high-quality reservoirs with porosity >15 % and permeability >5 m D. The main controlling factors of the high-quality reservoirs are attributed to the favorable sedimentary facies type and negligible compaction,and cementation, substantial dissolution of K-feldspar, overpressure, and the development of faults and fractures. A high-quality sublacustrine fan reservoir model has been established to explain how these factors affected the physical properties. The favorable targets for oil and gas exploration in the Dongying Formation of Bohai Sea include undercompacted sandy debris flow reservoirs showing the dissolution of K-feldspar, and the reservoirs which are connected to the source rocks by faults. This study provides insights to establish the relationship between sedimentology, diagenesis and reservoir quality. The results of this study are significant for the exploration and development of the sublacustrine fan sandstone reservoirs in the Bohai Sea and analogous sandstone reservoirs elsewhere.展开更多
基金Supported by the National Natural Science Foundation of China(91528303)CNOOC Technology Project(2021-KT-YXKY-05).
文摘The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.
文摘It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.
基金This study was supported by the project“the deep-water fan systems and petroleum resources in the South China Sea”(grant 40238060)sponsored by the Natural Science Foundation of China and the China National Offshore Oil Corporation.
文摘The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.
基金The National Natural Science Foundation of China under contract Nos 41872172,41672096 and 41702114the Major National Science and Technology Projects under contract No.2016ZX05026007-004+1 种基金the Natural Science Foundation of Shandong Province under contract No.ZR2019QD008the Natural Science Foundation of Guizhou Province under contract No.20191148
文摘The synsedimentary faults and basin-marginal fans located in the central part of the deep-water area of the early Oligocene Qiongdongnan Basin have been investigated using seismic profiles,boreholes,and well-log data.Through the formations of the characterized paleogeomorphology,such as transverse anticlines,fault ditches,and step-fault belts,the synsedimentary faults are known to have controlled the development position,distribution direction,and extension scales of the basin-marginal fans.For example,at the pitching ends of two adjacent faults,transverse anticlines developed,which controlled the development positions and distributions of the fans.During the early Oligocene,the faults controlled the subsidence center,and fault ditches were formed at the roots of the faults.In the surrounding salient or low salient areas,which were exposed as provenance areas during early Oligocene,the fault ditches acted as the source channels and determined the flow paths of the clastics,where incised valley fills were obviously developed.The fault ditches which developed in the sedimentary basins were able to capture the drainage systems and influenced the distributions of the fans.The large boundary faults and the secondary faults generated two fault terraces and formed step-fault belts.The first fault terrace caused the clastics to be unloaded.As a result,fans were formed at the entrance to the basin.Then,the second fault terrace caused the fans to move forward,with the fans developing in a larger extension scale.The results obtained in this study will potentially be beneficial in the future prospecting activities for reservoirs and coalmeasure source rocks in the basins located in the deep-water areas of the South China Sea.
基金Supported by the CNPC Science and Technology Major Project(2018E-11)
文摘High-yielding oil wells were recently found in the first member of Paleogene Shahejie Formation,the Binhai area of Qikou Sag,providing an example of medium-and deep-buried high-quality reservoirs in the central part of a faulted lacustrine basin.By using data of cores,cast thin sections,scanning electron microscope and physical property tests,the sedimentary facies,physical properties and main control factors of the high-quality reservoirs were analyzed.The reservoirs are identified as deposits of slump-type sub-lacustrine fans,which are marked by muddy fragments,slump deformation structure and Bouma sequences in sandstones.They present mostly medium porosity and low permeability,and slightly medium porosity and high permeability.They have primary intergranular pores,intergranular and intragranular dissolution pores in feldspar and detritus grains,and structural microcracks as storage space.The main factors controlling the high quality reservoirs are as follows:(1)Favorable sedimentary microfacies of main and proximal distributary gravity flow channels.The microfacies with coarse sediment were dominated by transportation and deposition of sandy debris flow,and the effect of deposition on reservoir properties decreases with the increase of depth.(2)Medium texture maturity.It is shown by medium-sorted sandstones that were formed by beach bar sediment collapsing and redepositing,and was good for the formation of the primary intergranular pores.(3)High content of intermediate-acid volcanic rock detritus.The reservoir sandstone has high content of detritus of various components,especially intermediate-acid volcanic rock detritus,which is good for the formation of dissolution pores.(4)Organic acid corrosion.It was attributed to hydrocarbon maturity during mesodiagenetic A substage.(5)Early-forming and long lasting overpressure.A large-scale overpressure compartment was caused by under-compaction and hydrocarbon generation pressurization related to thick deep-lacustrine mudstone,and is responsible for the preservation of abundant primary pores.(6)Regional transtensional tectonic action.It resulted in the structural microcracks.
文摘The mechanisms causing quality variations and key control factors of submarine-fan reservoirs in the gas field X of the Rovuma Basin,East Africa are analyzed based on core and well-log data in this paper.Depositional fabric,lithofacies difference and characteristics of genetic units are the fundamental reasons of reservoir quality variations.In the case of weak cementation,porosity and permeability of submarine-fan reservoirs are controlled by grain sorting and clay content,respectively.Reservoir quality variations for 5 main lithofacies are related to variable depositional fabrics and calcite cementation.Among them,massive medium-coarse sandstones with weak cementation have the highest porosity and permeability,and coarser or finer sandstones have poorer reservoir quality.The existence of bottom current can develop laminated sandstones,improving the pore structure and physical properties greatly.Lithofacies vary among different types,locations and stages of genetic units,and they control the distribution patterns of submarine-fan reservoir quality:the physical properties of channel shaft or lobe main body are better than those of the channel or lobe edge.The sandstone sorting and physical properties are gradually improved from near-source to far-source.When multi-stage sand bodies are superimposed,the sand-mud ratio in the later stage is higher than that in the earlier stage,making the physical properties get better in the later stage.
文摘The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these images are in the public domain, there has not been any systematic compilation of configurations of density plumes associated with various sedimentary environments and processes. This article, based on 45 case studies covering 21 major rivers(e.g., Amazon, Betsiboka, Congo [Zaire], Copper, Hugli [Ganges], Mackenzie, Mississippi, Niger, Nile, Rhone, Rio de la Plata, Yellow, Yangtze, Zambezi, etc.) and six different depositional environments(i.e., marine, lacustrine, estuarine, lagoon, bay, and reef), is the first attempt in illustrating natural variability of configurations of density plumes in modern environments. There are, at least, 24 configurations of density plumes. An important finding of this study is that density plumes are controlled by a plethora of 18 oceanographic, meteorological, and other external factors. Examples are: 1) Yellow River in China by tidal shear front and by a change in river course; 2) Yangtze River in China by shelf currents and vertical mixing by tides in winter months; 3) Rio de la Plata Estuary in Argentina and Uruguay by Ocean currents; 4) San Francisco Bay in California by tidal currents; 5) Gulf of Manner in the Indian Ocean by monsoonal currents; 6) Egypt in Red Sea by Eolian dust; 7) U.S. Atlantic margin by cyclones; 8) Sri Lanka by tsunamis; 9) Copper River in Alaska by high-gradient braid delta; 10) Lake Erie by seiche; 11) continental margin off Namibia by upwelling; 12) Bering Sea by phytoplankton; 13) the Great Bahama Bank in the Atlantic Ocean by fish activity; 14) Indonesia by volcanic activity; 15) Greenland by glacial melt; 16) South Pacific Ocean by coral reef; 17) Carolina continental Rise by pockmarks; and 18) Otsuchi Bay in Japan by internal bore. The prevailing trend in promoting a single type of river-flood triggered hyperpycnal flow is flawed because there are 16 types of hyperpycnal flows. River-flood derived hyperpycnal flows are muddy in texture and they occur close to the shoreline in inner shelf environments. Hyperpycnal flows are not viable transport mechanisms of sand and gravel across the shelf into the deep sea. The available field observations suggest that they do not form meter-thick sand layers in deep water settings. For the above reasons, river-flood triggered hyperpycnites are considered unsuitable for serving as petroleum reservoirs in deep-water environments until proven otherwise.
基金Supported by the CNPC Basic and Prospective Key Scientific and Technological Project (2021DJ24)。
文摘The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions.
文摘Terminal fans have formed the sedimentary system of the 2+3 sands of the upper second member, Shahejie formation in the west of the Pucheng Oilfield, Bohai Bay Basin, East China. Based on well logging data and physical properties of the reservoir beds, the 2+3 sands were divided into 16 sublayers. The heterogeneity of reservoir beds and distribution of interlayers and seal layers in the 2+3 sands were investigated. The intra-layer heterogeneity and inter-layer heterogeneity primarily belong to the severely heterogeneous classification. The spatial differentiation of sedimentary microfacies resulted in a change of reservoir bed heterogeneity, strong in the middle and southern parts, weak in the northern part. Spatial distribution of interlayers and seal layers is dominated by sedimentary microfacies, and they are thick in north-eastern and middle parts, thin in the south-western part.
文摘The Ledong-30 area is located in the southern part of the central depression of the Yinggehai basin, where the exploration activity aims to gas in the middle and deep strata is started lately. The previous studies on the sedimentary system and main controlling factors of reservoir formation are mainly focused on the middle and shallow strata above the Huangliu Formation. Based on a fine interpretation of seismic data, the sedimentary characteristics, internal structures, and distribution rules of submarine fans and gravity flow channels in the Ledong-30 area are analyzed in this paper. In addition, the dynamic migration processes of their planar distribution and the vertical evolution law (vertical sequence combinations and superposition features of turbidity events) are also addressed. At last, the internal structural characteristics of the gravity flow system and comprehensive formation mechanisms of the large-scale gravity flow sediments (turbidities fans) are also been analyzed, which is helpful for the prediction of favorable reservoir distribution. The results can be used directly to guide oil and gas exploration in the Ledong area of the Yinggehai basin.
基金supported by the 13th Five-Year National Science and Technology Major Project of China “Research on New Areas and Key Technologies of Bohai Sea Exploration”(2016ZX05024-003)。
文摘Sublacustrine fan is an important element in continental lacustrine basins and is significant for reservoir exploration. Oil and gas resources have been found in the sublacustrine fan sandstone reservoirs of the Paleogene Dongying Formation in the Bohai Sea. In this study, the characteristics of the sublacustrine fan reservoirs and the controlling factors are studied using information from logging, cores, physical properties,casting thin sections, X-ray diffraction of clay minerals, vitrinite reflectance, rock pyrolysis, manometry data,and 3D seismic data. The sublacustrine fans of the Dongying Formation in the LD10, QHD34, and BZ21 structures show high-quality reservoirs with porosity >15 % and permeability >5 m D. The main controlling factors of the high-quality reservoirs are attributed to the favorable sedimentary facies type and negligible compaction,and cementation, substantial dissolution of K-feldspar, overpressure, and the development of faults and fractures. A high-quality sublacustrine fan reservoir model has been established to explain how these factors affected the physical properties. The favorable targets for oil and gas exploration in the Dongying Formation of Bohai Sea include undercompacted sandy debris flow reservoirs showing the dissolution of K-feldspar, and the reservoirs which are connected to the source rocks by faults. This study provides insights to establish the relationship between sedimentology, diagenesis and reservoir quality. The results of this study are significant for the exploration and development of the sublacustrine fan sandstone reservoirs in the Bohai Sea and analogous sandstone reservoirs elsewhere.