Shale fractures are an important factor controlling shale gas enrichment and high-productivity zones in the Longmaxi Formation, Jiaoshiba area in eastern Sichuan. Drilling results have, however, shown that the shale f...Shale fractures are an important factor controlling shale gas enrichment and high-productivity zones in the Longmaxi Formation, Jiaoshiba area in eastern Sichuan. Drilling results have, however, shown that the shale fracture density does not have a straightforward correlation with shale gas productivity. Based on logging data, drilling and seismic data, the relationship between shale fracture and shale gas accumulation is investigated by integrating the results of experiments and geophysical methods. The following conclusions have been drawn:(1) Tracer diffusion tests indicate that zones of fracture act as favorable channels for shale gas migration and high-angle fractures promote gas accumulation.(2) Based on the result of azimuthal anisotropy prediction, a fracture system with anisotropy strength values between 1 and 1.15 represents a moderate development of high-angle fractures, which is considered to be favorable for shale gas accumulation and high productivity, while fracture systems with anisotropy strength values larger than 1.15 indicate over-development of shale fracture, which may result in the destruction of the shale reservoir preservation conditions.展开更多
基金supported by the National Key Basic Research Program of China (973 Program, No. 2014CB239104)National Science and Technology Major Project (No. 2017ZX05049002-005)+1 种基金Sinopec Basic Prospect Project (No. G5800-16-ZS-KJB043)NSFC-Sinopec Joint Key Project (No. U1663207)
文摘Shale fractures are an important factor controlling shale gas enrichment and high-productivity zones in the Longmaxi Formation, Jiaoshiba area in eastern Sichuan. Drilling results have, however, shown that the shale fracture density does not have a straightforward correlation with shale gas productivity. Based on logging data, drilling and seismic data, the relationship between shale fracture and shale gas accumulation is investigated by integrating the results of experiments and geophysical methods. The following conclusions have been drawn:(1) Tracer diffusion tests indicate that zones of fracture act as favorable channels for shale gas migration and high-angle fractures promote gas accumulation.(2) Based on the result of azimuthal anisotropy prediction, a fracture system with anisotropy strength values between 1 and 1.15 represents a moderate development of high-angle fractures, which is considered to be favorable for shale gas accumulation and high productivity, while fracture systems with anisotropy strength values larger than 1.15 indicate over-development of shale fracture, which may result in the destruction of the shale reservoir preservation conditions.