期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
An experimental study on microscopic characteristics of gas-bearing sediments under different gas reservoir pressures 被引量:2
1
作者 Zhenqi Guo Tao Liu +3 位作者 Lei Guo Xiuting Su Yan Zhang Sanpeng Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第10期144-151,共8页
Gas-bearing sediments are widely distributed in five continents all over the world.Most of the gases exist in the soil skeleton in the form of discrete large bubbles.The existence of gas-phase may increase or decrease... Gas-bearing sediments are widely distributed in five continents all over the world.Most of the gases exist in the soil skeleton in the form of discrete large bubbles.The existence of gas-phase may increase or decrease the strength of the soil skeleton.So far,bubbles’structural morphology and evolution characteristics in soil skeleton lack research,and the influence of different gas reservoir pressures on bubbles are still unclear.The micro characteristics of bubbles in the same sediment sample were studied using an industrial CT scanning test system to solve these problems.Using the image processing software,the micro variation characteristics of gas-bearing sediments in gas reservoir pressure change are obtained.The results show that the number and volume of bubbles in different equivalent radius ranges will change regularly under different gas reservoir pressure.With the increase of gas reservoir pressure,the number and volume of tiny bubbles decrease.In contrast,the number and volume of large bubbles increase,and the gas content in different positions increases and occupies a dominant position,driving the reduction of pore water and soil skeleton movement. 展开更多
关键词 micro characteristics CT scanning gas content number and volume of bubbles gas reservoir pressure seabed sediments
下载PDF
Experimental and Numerical Assessment of the Influence of Bottomhole Pressure Drawdown on Terrigenous Reservoir Permeability and Well Productivity
2
作者 Sergey Popov Sergey Chernyshov Evgeniy Gladkikh 《Fluid Dynamics & Materials Processing》 EI 2023年第3期619-634,共16页
During oil and gas fields development,a decrease in reservoir and bottomhole pressure has often a detrimental effect on reservoir properties,especially permeability.This study presents the results of laboratory tests ... During oil and gas fields development,a decrease in reservoir and bottomhole pressure has often a detrimental effect on reservoir properties,especially permeability.This study presents the results of laboratory tests conducted to determine the response of terrigenous reservoir core-sample permeability to changes in the effective stresses and a decrease in the reservoir pressure.The considered samples were exposed for a long time to a constant high effective stress for a more reliable assessment of the viscoplastic deformations.According to these experiments,the decrease of the core samples permeability may reach 21%with a decrease in pressure by 9.5 MPa from the initial reservoir conditions.Numerical simulations have been also conducted.These have been based on the finite element modeling of the near-wellbore zone of the terrigenous reservoir using poroelasticity relations.The simulation results show a limited decrease in reservoir permeability in the near-wellbore zone(by 17%,which can lead to a decrease in the well productivity by 13%). 展开更多
关键词 Terrigenous reservoir PERMEABILITY core sample reservoir pressure bottomhole pressure drawdown effective stress well productivity
下载PDF
Research on Pore Pressure-Depth Characteristics in Normal Pressure Reservoir, Bohai Sea Oilfield
3
作者 Pengfei Mu Qiongyuan Wu +2 位作者 Mingzhe Cui Geng Qian Bo Zhang 《Journal of Geoscience and Environment Protection》 2022年第4期101-110,共10页
In normal pressure of reservoir, formation pressure and depth can not fully reflect the linear relationship between the formation pressure with depth, the change rule of reservoir measured formation pressure and often... In normal pressure of reservoir, formation pressure and depth can not fully reflect the linear relationship between the formation pressure with depth, the change rule of reservoir measured formation pressure and often reduced pressure, understanding unclear cause fluid properties. By introducing basic principles of hydrostatics. The relationship between pressure coefficient and mathematical depth is discussed by mathematical induction analysis of measured pressure data of nearly 50 normal pressure reservoirs in Bohai Oilfield. The results show that the reservoir pressure data is linearly distributed with depth, and the pressure coefficient is inversely proportional to depth. When the depth becomes shallower, the pressure coefficient increases and approaches the reservoir level. As the depth increases, the pressure coefficient decreases and approaches the hydrostatic pressure coefficient infinitely. The study can more accurately analyze the reservoir pressure changes, which is helpful to study the oil and water distribution, reservoir connectivity and fluid properties of atmospheric pressure reservoirs. 展开更多
关键词 Bohai Basin Normal reservoir pressure Wireline Formation Tester pressure Coefficient Inverse Proportion Function
下载PDF
Modelling and Dynamic Characteristics for a Non-metal Pressurized Reservoir with Variable Volume
4
作者 Pei Wang Jing Yao +2 位作者 Baidong Feng Mandi Li Dingyu Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第2期159-173,共15页
With the increasing demand to reduce emissions and save energy,hydraulic reservoirs require new architecture to optimize their weight,space,and volume.Conventional open reservoirs are large,heavy,and easily polluted,a... With the increasing demand to reduce emissions and save energy,hydraulic reservoirs require new architecture to optimize their weight,space,and volume.Conventional open reservoirs are large,heavy,and easily polluted,and threaten the operation of hydraulic systems.A closed reservoir provides the advantages of small volume and light weight,compared to open reservoirs.In this study,a non-metallic pressure reservoir with variable volume is designed and manufactured for closed-circuit hydraulic systems.The reservoir housing is made of rubber,and the Mooney-Rivlin model is chosen based on the rubber strain properties.The FEA simulation for the reservoir is performed using ANSYS Workbench to obtain the structural stiffness.The major contribution is the establishment of mathematical models for this reservoir,including the volume equation changing with height,flow equation,and force balance equation,to explore the output characteristics of this reservoir.Based on these results,simulation models were built to analyze the output characteristics of the reservoir.Moreover,the test rig of a conventional hydraulic system was transformed into a closed-circuit asymmetric hydraulic system for the reservoir,and preliminary verification experiments were conducted on it.The results demonstrate that the designed reservoir can absorb and discharge oil and supercharge pump inlet to benefit system operation.The changes in the volume and pressure with displacements under different volume ratios and frequencies were obtained,which verified the accuracy of the mathematical models.Owing to its lightweight design and small volume,the reservoir can replace conventional open reservoirs,and this lays a foundation for future theoretical research on this reservoir. 展开更多
关键词 Hydraulic reservoir Variable volume pressure reservoir Non-metal LIGHTWEIGHT
下载PDF
Analysis of the relationship between water level fluctuation and seismicity in the Three Gorges Reservoir(China) 被引量:4
5
作者 Lifen Zhang Jinggang Li +3 位作者 Guichun Wei Wulin Liao Qiuliang Wang Chuanfang Xiang 《Geodesy and Geodynamics》 2017年第2期96-102,共7页
The Three Gorges Reservoir is a good site for the further researches on reservoir induced seismicity due to decades' seismic monitoring. After the first water impounding in 2003, seismic activity becomes more frequen... The Three Gorges Reservoir is a good site for the further researches on reservoir induced seismicity due to decades' seismic monitoring. After the first water impounding in 2003, seismic activity becomes more frequent than that before water impoundment. In order to quantitatively study, the relationship between the water level fluctuation and earthquakes in TGR, we introduced statistical methods to attain the goal. First of all, we relocated the earthquakes in TGR region with double difference method and divided the earthquakes into 5 clusters with clustering analysis method. Secondly, to examine the impacts of water level fluctuation in different water filling stages on the seismic activity in the 5 clusters, a series of statistical analyses are applied. Pearson correlation results show that only the 175 m water level fluc- tuation has significantly positive impacts on the seismic activity in clusters I, II, III and V with correlation coefficients of 0.44, 0.38, 0.66 and 0.63. Cross-correlation analysis demonstrates that 0, ], 0 and 0 month time delay separately for the clusters I, II, III and V exists. It illustrated the influences of the water loading and pore pressure diffusion on induced earthquakes. Cointegration tests and impulse response analysis denoted that the 175 m water level only had long term and significant effects just on the seismic events in the intersection region of the Fairy Mount Fault and Nine-brook Fault. One standard deviation shock to 175 m water level increased the seismic activity in cluster V for the first 3 months, and then the negative influence was shown. After 7 months, the negative impulse response becomes stable. The long-term effect of the 175 m water impoundment also proved the important role of pore pressure diffusion in RIS with time. 展开更多
关键词 Three Gorges reservoir reservoir-induced seismicity Water level fluctuation Cross correlation Impulse response Pore pressure diffusion
下载PDF
A numerical investigation of gas flow behavior in two-layered coal seams considering interlayer interference and heterogeneity 被引量:3
6
作者 Ziwei Wang Yong Qin +1 位作者 Teng Li Xiaoyang Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期699-716,共18页
Multiple-seam gas coproduction is a technology with potential to achieve economic targets.Physical experiments could replicate gas flow dynamics in two seams.In this study,numerical simulation was conducted based on p... Multiple-seam gas coproduction is a technology with potential to achieve economic targets.Physical experiments could replicate gas flow dynamics in two seams.In this study,numerical simulation was conducted based on physical experiments.Through calibration,the simulated results agreed with the experimental results.Three findings were obtained.First,the pressure distribution intrinsically depends on the depressurization effectiveness in each coal seam.The gas pressure difference and interval distance influence the pressure distribution by inhibiting depressurization in the top seams and bottom seams,respectively.Second,the production contribution shows a logarithmic relationship with the permeability ratio.The range of the production contribution difference grows from 11.24%to 99.99%when the permeability ratio increases 50 times.By comparison,reservoir pressure has a limited influence,with a maximum of 13.64%.Third,the interlayer interference of the top seams and bottom seams can be intensified by the reservoir pressure difference and the interval distance,respectively.The proposed model has been calibrated and verified and can be directly applied to engineering,serving as a reference for reservoir combination optimization.In summary,coal seams with a permeability ratio within 10,reservoir pressure difference within 1.50 MPa,and interval distances within 50 m are recommended to coproduce together. 展开更多
关键词 Sublayer interlayer interference index Permeability ratio reservoir pressure difference Interval distance Production contribution
下载PDF
Reservoir accumulation conditions and key exploration&development technologies for Keshen gas field in Tarim Basin 被引量:3
7
作者 Haijun Yang Yong Li +10 位作者 Yangang Tang Ganglin Lei Xiongwei Sun Peng Zhou Lu Zhou Anming Xu Jingjie Tang Wenhui Zhu Jiangwei Shang Weili Chen Mei Li 《Petroleum Research》 2019年第4期295-313,共19页
The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a numb... The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a number of large and medium scale gas reservoirs including Keshen 2,Keshen 5 and Keshen 8 have been discovered,that are characterized by ultra depth,ultra-high pressure,ultra-low porosity,ultra-low permeability,high temperature and high pressure.With natural gas geological reserves of nearly trillion cubic meters and production capacity of nearly 5.5 billion cubic meters,the Keshen gas field is the main natural gas producing area in Tarim Oilfield.The Keshen gas field is located in a series of thrusting imbrication structures in the Kelasu structural belt of Kuqa foreland thrust belt.The salt roof structure,plastic rheology of salt beds and pre-salt faulted anticlinal structure constitute the large wedge-shaped thrust body.The thick delta sandstone of the Cretaceous Bashijike Formation is widely distributed,and it forms the superior reservoir-caprock combination with overlying Paleogene thick gypsum-salt bed.The deep Jurassic-Triassic oil and gas migrate vertically along fault system formed in Late Himalaya,break through the thick Cretaceous mudstone and move laterally along the fracture system of the pre-salt reservoirs,to form anticline and fault anticline high pressure reservoir groups.Through near ten years of studies,the three-dimensional seismic acquisition and processing technology for complex mountainous areas,extrusion salt-related structural modeling technology and fractured low-porosity sandstone reservoir evaluation technology have been established,which lay a foundation for realization of oil and gas exploration objectives.Logging acquisition and evaluation technology for high temperature,high pressure,ultra-deep and low-porosity sandstone gas reservoirs,and efficient development technology for fractured tight sandstone gas reservoirs have been developed,which provide a technical support for efficient exploration&development and rapid production of the Keshen gas field. 展开更多
关键词 Oil and gas accumulation Three-dimensional mountainous seismic EXPLORATION Ultra-deep high temperature and high pressure gas reservoirs High efficiency exploration and DEVELOPMENT Keshen gas field Tarim Basin
原文传递
Multi-Layer Superposed Coalbed Methane System in Southern Qinshui Basin, Shanxi Province, China 被引量:9
8
作者 Zheng Zhang Yong Qin +2 位作者 Xuehai Fu Zhaobiao Yang Chen Guo 《Journal of Earth Science》 SCIE CAS CSCD 2015年第3期391-398,共8页
Multi-coalbed developed in Carboniferous–Permian coal-bearing strata of southern Qinshui Basin, and different coal-bearing segments have different coalbed methane(CBM) reservoiring characteristics. Analysis of prev... Multi-coalbed developed in Carboniferous–Permian coal-bearing strata of southern Qinshui Basin, and different coal-bearing segments have different coalbed methane(CBM) reservoiring characteristics. Analysis of previous studies suggests that the essence of an unattached CBM system is to possess a unified fluid pressure system, which includes four key elements, namely, gas-bearing coal-rock mass, formation fluid, independent hydrodynamic system and capping layer condition. Based on the exploration and exploitation data of CBM, it is discovered that the gas content of coal seams in southern Qinshui Basin presents a change rule of non-monotonic function with the seam dipping, and a turning point of the change appears nearby coal seam No. 9, and coal seams of the upper and the lower belong to different CBM systems respectively; well test reservoir pressure shows that the gradient of coal seam No. 15 of the Taiyuan Formation is significantly higher than that of coal seam No. 3 of the Shanxi Formation; the equivalent reservoir pressure gradient of coal seam No. 15 "jumps" obviously compared with the reservoir pressure gradient of coal seam No. 3 in the same vertical well, that is, the relation between reservoir pressure and burial depth takes on a characteristic of nonlinearity; meanwhile, the vertical hydraulic connection among the aquifers of Shanxi Formation and Taiyuan Formation is weak, constituting several relatively independent fluid pressure systems. The characteristics discussed above reveal that the main coal seams of southern Qinshui Basin respectively belong to relatively independent CBM systems, the formation of which are jointly controlled by sedimentary, hydrogeological and structural conditions. 展开更多
关键词 multi-coalbed coalbed methane system fluid pressure system equivalent reservoir pressure gradient formation mechanism
原文传递
Additional Vogt Coefficients and Improved Trial Load Method for Arch Dams
9
作者 CHEN Shenghong SHI Zhongyue XU Qing 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2020年第3期247-255,共9页
In recent years,the perceivable difference in observed and computed deflections for arch dams suggests the necessity to consider the side-load action of the hydrostatic pressure on reservoir basin(HPRB).In this paper,... In recent years,the perceivable difference in observed and computed deflections for arch dams suggests the necessity to consider the side-load action of the hydrostatic pressure on reservoir basin(HPRB).In this paper,two additional Vogt coefficients with regard to the normal and angular deflections of arch dam foundation due to the action of HPRB are firstly elaborated,then an algorithm of the improved trial load method(ITLM)taking into account of conventional(six)and additional(two)Vogt coefficients is implemented.The elastic finite element method is employed as the bench mark in the verification of the improved method,which confirms that a better prediction of dam deflections and their gradient related stresses for arch dams may be provided by the ITLM taking into account of HPRB action. 展开更多
关键词 arch dam hydrostatic pressure on reservoir basin(HPRB) additional Vogt coefficients trial load method(TLM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部