The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples ...The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples of five wells from depths of 850 m to 3 000 m were studied. A series of comprehensive petrographic and geochemical analyses were performed to unravel the diagenetic features and their impact on the reservoir quality.Petrographically, the sandstones are dominated by feldspathic litharenites and lithic arenites with fine to medium grain sizes and moderate to good sorting. The reservoir quality varies greatly with a range of porosity from 0.2% to 36.1% and permeability from 0.016 ×10~(–3) μm~2 to 4 301 ×10~(–3) μm~2, which is attributed to complex diagenetic evolution related to sedimentary facies;these include compaction, cementation of calcite, dolomite, siderite and framboidal pyrite in eogenetic stage;further compaction, feldspar dissolution, precipitation of ferrocalcite and ankerite, quartz cements, formation of kaolinite and its illitization, precipitation of albite and nodular pyrite, as well as hydrocarbon charge in mesogenetic stage. The dissolution of feldspar and illitization of kaolinite provide internal sources for the precipitation of quartz cement, while carbonate cements are derived from external sources related to interbedded mudstones and deep fluid. Compaction is the predominant factor in reducing the total porosity, followed by carbonate cementation that leads to strong heterogeneity. Feldspar dissolution and concomitant quartz and clay cementation barely changes the porosity but significantly reduces the permeability.The high-quality reservoirs can be concluded as medium-grained sandstones lying in the central parts of thick underwater distributary channel sandbodies(>2 m) with a high content of detrital quartz but low cement.展开更多
The Asmari Formation Oligo-Miocene in age is one of the most important reservoir rocks in SW Iran and Zagros basin and composed of carbonate rocks and locally sandstones and evaporates. In this research, reservoir qua...The Asmari Formation Oligo-Miocene in age is one of the most important reservoir rocks in SW Iran and Zagros basin and composed of carbonate rocks and locally sandstones and evaporates. In this research, reservoir quality controlling factors have been investigated in a well in one of the oil fields in Dezful Embayment, SW Iran. Based on this research, depositional environment, diagenesis and fracturing have been affected on reservoir quality. 3 distinct depositional settings can be recognized in the studied interval including tidal flat, lagoon, and shoal. Among these depositional setting, shoal environment with ooid grainstone microfacies along with interparticle porosity shows good reservoir characteristics. Diagenetic processes also play an important role on reservoir quality;dolomitization and dissolution have positive effects on porosity and enhances reservoir quality, while cementation, anhydritization and compaction have negative effect on it. Fracturing is another important factor affected on the carbonate reservoirs especially in the Asmari Formation.展开更多
The current study aims to ascertain the reservoir characteristics of the Tariki Sandstone Member of the Otaraoa Formation,Taranaki Basin,New Zealand.This study was carried out by integrating the comprehensive petrophy...The current study aims to ascertain the reservoir characteristics of the Tariki Sandstone Member of the Otaraoa Formation,Taranaki Basin,New Zealand.This study was carried out by integrating the comprehensive petrophysical evaluation,sedimentological and petrographic studies,as well as well log analysis by using data from six wells.The porosity-permeability relationship is used to divide the samples of the Tariki Sandstone Member into reservoir and non-reservoir facies.A thorough petrophysical analysis shows that the maximum porosity values fluctuate between 16.6%and 22.1%,while permeability ranges from 102 mD to 574 mD,which indicates fair to good reservoir quality.Moreover,the Tariki sandstone represents six hydraulic flow units with a high reservoir quality index and flow zone indicator representing good reservoir characteristics.The pore size varies between nano and megapores with dominant macropores.Based on the sedimentological and petrographic analysis,the Tariki Sandstone Member is classified as a combination of subarkose,arkose,and lithic arkose with fine to medium and moderately to moderately well-sorted grains.The main diagenetic factor affecting the reservoir quality is cementation,which occupied all the pores with calcite.On the bright side,the secondary pores are developed due to the dissolution of calcite cement and few grains.The well log analysis demonstrates the presence of low clay volume ranging from 0.3%to 3.1%,fair to good effective porosity values between 13.6%and 15.9%,net pay thickness from 18.29 m to 91.44 m,and hydrocarbon saturation from 56%to 77.9%.The findings from this study revealed that the Tariki Sandstone Member possesses fair to good reservoir quality and hydrocarbon potential,which indicate submarine fans as appealing hydrocarbon reservoirs.This study can be used in similar depositional environments elsewhere in the world.展开更多
An integrated geological-petrophysical analysis of the rudist-bearing sequence of the Cretaceous Sarvak Formation is given one giant oilfield,and provides an improved understanding of this main reservoir in the Abadan...An integrated geological-petrophysical analysis of the rudist-bearing sequence of the Cretaceous Sarvak Formation is given one giant oilfield,and provides an improved understanding of this main reservoir in the Abadan Plain,in the Zagros Basin,SW Iran.The main objective of this study is to evaluate reservoir potential of the Sarvak Formation,and then to utilize the calibrated well log signature to correlate reservoir potential in un-cored wells.Eight main facies are recognized and categorized in five facies groups:lagoon,shoal,rudist-biostrome,slope,and shallow open marine,deposited on a shelf carbonate platform.Given the distribution of diagenetic products and their effects on pore systems,three diagenetic facies namely,(DF-1)low dissolution and cementation;(DF-2);high dissolution;and(DF-3)high cementation are differentiated.The initial sedimentary characteristics in combination with distribution of diagenetic products play an important role in reservoir quality heterogeneity.The effect of diagenetic processes related to disconformities mainly depends on the facies nature below these surfaces.Grain-dominated facies of shoal and rudist debris,observed below the Cenomanian–Turonian disconformity,are mostly characterized by high dissolution and interconnected pore systems.Finally,depositional and diagenetic facies in the studied wells are correlated by petrophysical well log data,leading to distribution of the reservoir zones.Data obtained can be utilized for efficient reservoir characterization of the Sarvak Formation and its equivalent units in the Arabian Plate.展开更多
The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geoch...The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geochemical and petrological analyses show that calcite grains have a negative Ce anomaly indicating they formed in the oxidizing environment of seawater. The high carbonate mineral contents in the margin of basin indicate that calcite grains and cores of dolomite grains appear largely to be of detrital origin. The rhombic rims of dolomite grains and dolomite concretions with the δ^(13)C of –15.46‰ and the enrichment of middle rare earth elements were formed during the sulfate-driven anaerobic oxidation of methane. The calcite in radiolarian were related to the microbial sulfate reduction for the abundant anhedral pyrites and δ^(13)C value of –11.34‰. Calcite veins precipitated in the deep burial stage with homogenization temperature of the inclusions ranging from 146.70 ℃ to 182.90 ℃. The pores in shale are mainly organic matter pores with pore size mainly in the range of 1–20 nm in diameter. Carbonate minerals influence the development of pores through offering storage space for organic matter. When calcite contents ranging from 10% to 20%, calcite grains and cement as rigid framework can preserve primary pores. Subsequently, the thermal cracking of liquid petroleum in primary pores will form organic matter pores. The radiolarian were mostly partially filled with calcite, which combining with microcrystalline quartz preserved a high storage capacity.展开更多
Reservoir quality varies greatly in the Shahejie Formation in the Dongying Sag. It is essential to analyze the variation and mechanisms of reservoir quality for determining the controlling factors based on cores, poro...Reservoir quality varies greatly in the Shahejie Formation in the Dongying Sag. It is essential to analyze the variation and mechanisms of reservoir quality for determining the controlling factors based on cores, porosity measurements and fluid inclusion techniques and so on. The sandstones in the fluvial, (fan) delta-front have the best reservoir quality due to the depositional conditions mechanically controlling the petrology configuration and the primary porosity, and chemically influencing the diagenesis and development of secondary pores. The activity of the boundary faults and the sedimentary facies dominate the variation of reservoir quality in different areas and intervals. The reservoir quality varies with the position of sandstone beds in different vertical models of sandstone and mudstone. This mainly arose from the strong cementation or strong dissolution in the sandstone caused by the diagenesis evolution of adjacent mudstone. With higher oil saturation reservoir quality is better because the hydrocarbon charge favors dissolution and restricts cementation. Diagenesis, depositional conditions and tectonic setting are the key controls of reservoir quality in the Shahejie Formation of the Dongying Sag.展开更多
The diagenetic processes of the Tabei sandstones in the Tarim Basin include compaction, cementation (quartz overgrowths, calcite, clay minerals and a minor amount of pyrite), and dissolution of the feldspar and calc...The diagenetic processes of the Tabei sandstones in the Tarim Basin include compaction, cementation (quartz overgrowths, calcite, clay minerals and a minor amount of pyrite), and dissolution of the feldspar and calcite cement. Porosity was reduced by compaction from an assumed original 40% to about 22.1%. Cementation reduced porosity to 26.6%. The Tabei sandstones lost a little more porosity by compaction than by cementation. Quartz cementation, especially syntaxial quartz overgrowth, is a major cause of porosity-loss in many reservoirs in moderately to deeply buried sandstone. Calcite cementation played a key role in the porosity evolution of sandstones. At the early stage of burial, the early calcite cement occupied most of the pore spaces resulting in significant porosity. On the other hand, some primary porosity has been preserved due to incomplete filling or the presence of scattered patches of calcite cement. In addition to calcite, several clay minerals, including illite and chlorite occurred as pore-filling and pore-lining cements. The pore-lining chlorite may have helped in retaining the porosity by preventing the precipitation of syntaxial quartz overgrowths. Illite, which largely occurred as hair-like rims around the grains and bridges on the pore throats, caused a substantial deterioration of penetrability of the reservoir. Calcite cement dissolution was extensive and contributed significantly to the development of secondary porosity.展开更多
Based on porosity and permeability measurements, mercury porosimetry measurements, thin section analyses, SEM observations, X-ray diffraction (XRD) analysis and granulometric analyses, diagenetic features of reservo...Based on porosity and permeability measurements, mercury porosimetry measurements, thin section analyses, SEM observations, X-ray diffraction (XRD) analysis and granulometric analyses, diagenetic features of reservoir sandstones taken from the Zhuhai formation in the Panyu low-uplift of the Pear River Mouth Basin were examined. This study shows that chlorite cements are one of the most important diagenetic features of reservoir sandstones. The precipitation of chlorite was controlled by multiple factors and its development occurred early in eo-diagenesis and continued till Stage A of middle diagenesis. The precipitation of chlorite at the early stage was mainly affected by the sedimentary environment and provenance. Abundant Fe- and Mg-rich materials were supplied during the deposition of distributary channel sediments in the deltaic front setting and mainly in alkaline conditions. With the burial depth increasing, smectite and kaolinite tended to be transformed into chlorite. Smectite cements were completely transformed into chlorite in sandstones of the studied area. Volcanic lithics rich in Fe and Mg materials were dissolved and released Fe2+ and Mg 2+ into the pore water. These cations precipitated as chlorite cements in middle diagenesis in an alkaline diagenetic environment. Chlorite coatings acted as porosity and permeability, thus helping preserve cements in the chlorite cemented sandstones. The reservoir quality of chlorite cemented sandstones is much better than sandstones without chlorite cements. Chlorite cements play an important role in the reservoir evolution that was mainly characterized by preserving intergranular porosity and forming better pore-throat structures of sandstones.展开更多
Petrographic analysis combined with various techniques, such as scanning electron microscopy and X-ray diffraction, was used to assess the timing of growth and original mineral cements, the controls on reservoir and r...Petrographic analysis combined with various techniques, such as scanning electron microscopy and X-ray diffraction, was used to assess the timing of growth and original mineral cements, the controls on reservoir and reservoir quality of the fourth member sandstones of Shahejie formation (Es4). The Es4 sandstones are mostly arkose and lithic arkose, rarely feldspathic litharenite, with an average mass fraction of quartz 51.6%, feldspar 33.8% and rock fragments 14.6% (Q51.6F33.8R14.6). They have an average framework composition (mass fraction) of quartz 57.10%, K-feldspar 5.76%, sodium-calcium feldspar 13.00%, calcite 5.77%, dolomite 5.63%, siderite 0.95%, pyrite 0.30%, anhydrite 0.04%, and clay mineral 11.46%. The diagenentic minerals typically include kaolinite, illite-smectite (I/S), illite, chlorite, authigenetic quartz and feldspar, and carbonate and pyrite. Es4 sandstone has undergone stages A and B of eodiagenesis, and now, it is experiencing stage A of mesodiagenesis. Reservoir quality is predominantly controlled by the mechanical compaction, for example, 45.65% of the original porosity loss is related to compaction. The original porosity loss related with cementation is only 26.00%. The reservoir quality is improved as a result of dissolution of feldspar, rock fragment and so forth. The porosity evolved from dissolution varies from 3% to 4%.展开更多
Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oi...Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oil and gas in fine-grained rocks.However,due to the resolution limit of conventional logs,it is challenging to recognize the features of centimeter-scale laminae.To close this gap,complementary studies,including core observation,thin section,X-ray diffraction(XRD),conventional log analysis,and slabs of image logs,were conducted to unravel the centimeter-scale laminae.The laminae recognition models were built using well logs.The fine-grained rocks can be divided into laminated rocks(lamina thickness of<0.01 m),layered rocks(0.01-0.1 m),and massive rocks(no layer or layer spacing of>0.1 m)according to the laminae scale from core observations.According to the mineral superposition assemblages from thin-section observations,the laminated rocks can be further divided into binary,ternary,and multiple structures.The typical mineral components,slabs,and T2spectrum distributions of various lamina types are unraveled.The core can identify the centimeter-millimeter-scale laminae,and the thin section can identify the millimeter-micrometer-scale laminae.Furthermore,they can detect mineral types and their superposition sequence.Conventional logs can identify the meter-scale layers,whereas image logs and related slabs can identify the laminae variations at millimeter-centimeter scales.Therefore,the slab of image logs combined with thin sections can identify laminae assemblage characteristics,including the thickness and vertical assemblage.The identification and classification of lamina structure of various scales on a single well can be predicted using conventional logs,image logs,and slabs combined with thin sections.The layered rocks have better reservoir quality and oil-bearing potential than the massive and laminated rocks.The laminated rocks’binary lamina is better than the ternary and multiple layers due to the high content of felsic minerals.The abovementioned results build the prediction model for multiscale laminae structure using well logs,helping sweet spots prediction in the Permian Lucaogou Formation in the Jimusar Sag and fine-grained sedimentary rocks worldwide.展开更多
The Kimmeridgian-Tithonian aged Arab Formation, as the main reservoir of the Jurassic succession in the Balal oilfield, located in the offshore region of the Iranian sector of the Persian Gulf, is investigated in this...The Kimmeridgian-Tithonian aged Arab Formation, as the main reservoir of the Jurassic succession in the Balal oilfield, located in the offshore region of the Iranian sector of the Persian Gulf, is investigated in this study. The formation is composed of dolomites and limestones with anhydrite interbeds. Based on detailed petrographic studies, six microfacies are recognized, which are classified in four sub-environments including supratidal, intertidal, lagoonal and the high energy shoal of a homoclinal carbonate ramp. The main diagenetic features of the studied succession include dolomitization, anhydritization, cementation, micritization, fracturing and compaction. Based on stable isotope data, dolomitization of the upper Arab carbonates is related to sabkha settings (i.e. evaporative type). In terms of sequence stratigraphy, three shallowing-upward sequences are recognized, based on core and wireline log data from four wells of the studied field. Considering depositional and diagenetic effects on the reservoir quality, the studied facies are classified into eight reservoir rock types (RRT) with distinct reservoir qualities. Dolomitization has played a major role in reservoir quality enhancement, whereas anhydritization, carbonate cementation, and compaction have damaged the pore throat network. Distribution of the recognized RRTs in time and space are discussed within the context of a sequence stratigraphic framework.展开更多
Three productive layers have been proved in the Tertiary sequence of Tarim basin. At depths of more than 5 000 m, the Tertiary reservoir sandstones or Northern Tarim is found to have porosities greater than 15% and pe...Three productive layers have been proved in the Tertiary sequence of Tarim basin. At depths of more than 5 000 m, the Tertiary reservoir sandstones or Northern Tarim is found to have porosities greater than 15% and permeabilities up to 1 000×10-3μm2.These pores are intergrauular and appear to be primary that bave survived rrom compaction and cementation. Based on the lithology data, physical properties and pere conriguration as well as characteristics of oil and gas production, tbe reservoir quality of 8andstones was evaluated and divided into three ranks. The reservoir quaIity of Tertiary sandstone bodies is also depeudent upon diagenetic processes. The author proposes a porosity evolutiou model to explain the origin of primary porosity preservation. Several factors may have contributed to POrosity preservation: rapid burial, low paleogeothermal gradient, early iron oxidation and chlorite coatiug, partlal Pore filling by early calcite and gyp-sum.展开更多
The Triassic fluvial sandstones of the Skagerrak Formation were deposited in a series of salt-walled mini-basins and act as important hydrocarbon reservoirs for several high-pressure, high-temperature(HPHT) fields i...The Triassic fluvial sandstones of the Skagerrak Formation were deposited in a series of salt-walled mini-basins and act as important hydrocarbon reservoirs for several high-pressure, high-temperature(HPHT) fields in the Central Graben, North Sea. The HPHT reservoirs exhibit excellent reservoir quality considering their depth of burial and hence have been of high interest for hydrocarbon exploration. This research uses a multidisciplinary approach to assess the Skagerrak Formation fluvial reservoir quality from the Seagull field incorporating core analysis, petrography, electron microscopy, XRD analysis, fluid inclusion appraisal and burial history modelling. Halokinesis and salt withdrawal at the margin of the saltwalled mini-basin induced early disaggregation bands and fractures at shallow burial and led to increased influx of meteoric water and clay mineral infiltration from overlying sedimentation. The density of disaggregation bands correlates with the occurrence and magnitude of pore-filling authigenic clay minerals, concentrated along the margin of the saltwalled mini-basin. The fluvial channel sandstones of the Skagerrak Formation are subject to strong intra-basinal spatial reservoir quality variations despite diagenesis and low vertical effective stress having played a favourable role in arresting porosity loss.展开更多
The characteristics and genesis of the calcite veins in Carboniferous basalt in the east slope of Mahu Sag,Junggar Basin are investigated based on observation of cores and thin sections;analyses of X-ray fluorescence,...The characteristics and genesis of the calcite veins in Carboniferous basalt in the east slope of Mahu Sag,Junggar Basin are investigated based on observation of cores and thin sections;analyses of X-ray fluorescence,in situ major,trace and rare earth elements(REE),carbon,oxygen and strontium isotopes,fluid inclusions,as well as basin modeling.There are three periods of calcite fillings.The Period I calcite is characterized by low Mn content,flat REE pattern,strong negative cerium(Ce)anomaly,weak to moderate negative Eu anomaly,and light carbon isotopic composition,indicating the formation of the calcite was affected by meteoric water.The Period II calcite shows higher Mn and light REE contents,weak positive Ce anomaly and slight positive europium(Eu)anomaly,and a little heavier carbon isotopic composition and slightly lower strontium isotope ratio than the Period I calcite,suggesting that deep diagenetic fluids affected the formation of the Period II calcite to some extent.The Period III calcite is rich in iron and manganese and has REE pattern similar to that of the Period II calcite,but the cerium and europium enomalies vary significantly.The Period I and II calcites were formed in shallow diagenetic environment at approximately 250–260 Ma,corresponding to Late Hercynian orogeny at Late Permian.The PeriodⅢcalcite was probably formed in the Indo-China movement during Late Triassic.It is believed that the precipitation of calcite in basalt fractures near unconformity was related to leaching and dissolution of carbonates in the overlying Lower Permian Fengcheng Formation by meteoric water,which destructed the Carboniferous weathering crust reservoirs in early stage.Relatively high quality reservoirs could be developed in positions with weak filling and strong late dissolution,such as structural high parts with Fengcheng Formation missing,distant strata from Fengcheng Formation vertically,buried hills inside lake basin,etc.展开更多
The Upper Paleogene lacustrine fine-grained sandstones in the hinterlands of the northern Qaidam Basin mainly contain two sweet spot intervals.Fracture/fault,microfacies,petrology,pore features,diagenesis,etc.,were in...The Upper Paleogene lacustrine fine-grained sandstones in the hinterlands of the northern Qaidam Basin mainly contain two sweet spot intervals.Fracture/fault,microfacies,petrology,pore features,diagenesis,etc.,were innovatively combined to confirm the controlling factors on the reservoir quality of shallow delta-lacustrine fine-grained sandstones.The diagenesis of the original lake/surface/meteoric freshwater and acidic fluids related to the faults and unconformity occurred in an open geochemical system.Comprehensive analysis shows that the Upper Paleogene fine-grained sandstones were primarily formed in the early diagenetic B substage to the middle diagenetic A substage.Reservoir quality was controlled by fault systems,microfacies,burial-thermal history,diagenesis,hydrocarbon charging events(HCE),and abnormally high pressure.Shallow and deep double fault systems are the pathways for fluid flow and hydrocarbon migration.Sandstones developed in the high energy settings such as overwater(ODC)and underwater distributary channels(UDC)provide the material foundation for reservoirs.Moderate burial depth(3000-4000 m),moderate geothermal field(2.7-3.2℃/100 m),and late HCE(later than E3)represent the important factors to protect and improve pore volume.Meteoric freshwater with high concentrations of CO_(2)and organic acids from thermal decarboxylation are the main fluids leading to the dissolution and reformation of feldspar,rock fragments,calcite and anhydrite cements.Abnormally high pressure caused by the undercompaction in a large set of argillaceous rocks is the key to form high-quality reservoirs.Abnormal pressure zones reduced and inhibited the damage of compaction and quartz overgrowth to reservoir pores,allowing them to be better preserved.A reservoir quality evaluation model with bidirectional migration pathways,rich in clay minerals,poor in cements,superimposed dissolution and abnormally high pressure was proposed for the ODC/UDC finegrained sandstones.This model will facilitate the future development of fine-grained sandstone reservoirs both in the Upper Paleogene of the Qaidam Basin and elsewhere.展开更多
The Keshen gas field is one of the most important natural gas supply sources in the Tarim basin,western China.The main gas producing interval there is the Lower Cretaceous Bashijiqike Formation(K1bs),it is an ultra-de...The Keshen gas field is one of the most important natural gas supply sources in the Tarim basin,western China.The main gas producing interval there is the Lower Cretaceous Bashijiqike Formation(K1bs),it is an ultra-deep tight reservoir whose buried depth exceeds 6000 m,and it shows a low matrix porosity(<10%)and extremely low matrix permeability(<0.1mD).However,this reservoir can supply extremely high and stable gas production due to improvement of reservoir quality by tectonism and fluid.Based on tectonic evolution analysis by plenty of lab data of core plugs or thin sections,the enhancement models of tectonism and fluid are built,evidence suggests both tectonism and fluid improve the reservoir quality greatly.Tectonic evolution produces lots of natural fractures in 3stages which promote the ultra-deep tight reservoir permeability 10–200 times,then,testing results of new boreholes without fracturing show reservoir permeability underground can reach 20 mD.Furthermore,fluid dissolution increases reservoir porosity 1–2 times,the main dissolved mineral is feldspar,all fluid dissolution came from the unconformity controlling the dissolution distance.Tectonism and fluid interact on each other:Tectonism controls fracture distribution and types of diagenic fluid in reservoir,but fluids influence fracture cements and dissolution.Both tectonic folding and the fluid flow control the sweet point reservoir located in upper 150 m formation.展开更多
The results of integrated sedimentology,petrography,and petrophysical study of the Upper Devonian(Middle Famennian)Dankovo-Lebedyansky carbonates from Southeast Tatarstan of the Volga-Ural Basin revealed a variety of ...The results of integrated sedimentology,petrography,and petrophysical study of the Upper Devonian(Middle Famennian)Dankovo-Lebedyansky carbonates from Southeast Tatarstan of the Volga-Ural Basin revealed a variety of microfacies and diagenetic events that impacted the reservoir quality.Although our earlier study documented microfacies analysis and depositional environments,none of the studies focused on diagenesis,microfacies interaction,and their controls on the studied sediment's reservoir quality.Based on petrographic and microfacies analyses,the seven identified microfacies types are peloidal grainstone MF 1,cemented bioclastic peloidal grainstone MF 2,echinoderm-concentrated packstone MF 3,algae packstone MF 4,bioclastic wackestone MF 5,whole-fossil wackestone MF 6,and dolomite MF 7.For the investigated sediments,a gently deepening carbonate ramp depositional model with an inner,middle,and outer ramp setting is proposed.The observed diagenetic events in this study include micritization,calcite cementation(six cement types),dolomitization(six dolomite types),dissolution(fabric and non-fabric-selective dissolution),compaction,and microfracturing.The identified microfacies were classified into three distinct classes based on their petrophysical characteristics.MF 1 and MF 7 are microfacies types with the best reservoir quality.MF 3 and MF 4 are microfacies types of moderate reservoir quality.MF 2,MF 5,and MF 6 are microfacies types with poor or non-reservoir quality.Calcite cementation,micritization,and compaction are the primary diagenetic modifications responsible for porosity reduction.Moldic pores created by dissolution are a significant porosityimproving process.Porosity is locally enhanced by stylolite and microfractures.Dolomitization improved reservoir quality by creating intercrystalline and vuggy porosity.Understanding the impact of microfacies and diagenesis on reservoir quality is crucial for understanding reservoir properties in nearby fields with similar settings.展开更多
The Miocene sandstone deposits in the Southern California region are important hydrocarbon reservoirs. However, their development has been very challenging due to the wide variability in their reservoir quality. These...The Miocene sandstone deposits in the Southern California region are important hydrocarbon reservoirs. However, their development has been very challenging due to the wide variability in their reservoir quality. These sandstones have been studied from three sedimentary basins by petrographic thin section, scanning electron microscope, and X-ray diffraction to evaluate and compare the influence of diagenesis on their reservoir quality in these basins. Four petrofacies, namely P1(sand injectite or dyke), P2(sub-marine fan), P3(turbidite and marine-influenced alluvial fans) and P4(continental sandstones) have been identified. P1 and P2 characterise the sandstones in the San Joaquin forearc basin and are affected by kaolinite and extensive early calcite diagenesis. P3 and P4 delineate the sandstones in the Cajon Valley and Salton Trough strike-slip basins and are dominated by smectite, mixed illite-smectite, early calcite and late calcite diagenesis. Early calcite cement in P3 and P4 is in lower proportion than in P1 and P2. Although the dissolution of these sandstones by acidic fluids did not have a pattern, it, however, has the most considerable influence on P2 creating moldic pores which are expected to increase pore connectivity. The relatively abundant dissolution pores in P2, together with the absence of late authigenic calcite and illite clay in comparison to the other petrofacies studied are likely to make this sandstone facies the best reservoir targets in the Southern California region. These rocks are analogous to producing reservoirs in the region. However, because, petroleum accumulation in these reservoirs are compartmentalized by early calcite cement, maximum recovery using acidified fluids is recommended to dissolve the calcite-filled pores in order to increase connectivity of their pore network and enhance flow potential.展开更多
Based on observations made on cores and cuttings from several wells in the lowermost part of the third member of the Shahejie Formation, several rock types, specifically clast-supported rudstone, matrix-supported ruds...Based on observations made on cores and cuttings from several wells in the lowermost part of the third member of the Shahejie Formation, several rock types, specifically clast-supported rudstone, matrix-supported rudstone, mixed-source rudstone, calcisiltite/calcarenite, massive calci- lutite and laminated calcilutite, have been identified in the Shulu sag. According to the sedimentary structures and distribution characteristics of these rocks, the carbonate breccias fall into two cate- gories, based on their origins: one formed by fan-delta channel sedimentation, whereas the other formed by earthquake-induced slump fan deposition. Clast-supported rudstone and matrix- supported rudstone are the main lithologies deposited by braided rivers in the fan delta plain and front, of which the pore space is mainly dissolution pores within gravels and tectonic fissures. Clast- supported rudstone, matrix-supported rudstone and mixed-source rudstone are the main lithologies of the earthquake-induced slump fans. These carbonate breccias developed along with soft-sediment deformation structures, which are interpreted as seismites and are widely distributed in the sag, in which intercrystalline pores, intergranular pores and fissures created from diagenetic shrinkage are developed. The two kinds of rudstones have different reservoir characteristics and oil/gas testing re- suits. The rudstones generated in the fan delta have higher porosity and permeability, as well as bet- ter oil/gas testing results. Thus, they are key targets for petroleum exploration.展开更多
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.
基金The National Natural Science Foundation of China under contract No. 42262020the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under contract No. NJZY22445。
文摘The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea.For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples of five wells from depths of 850 m to 3 000 m were studied. A series of comprehensive petrographic and geochemical analyses were performed to unravel the diagenetic features and their impact on the reservoir quality.Petrographically, the sandstones are dominated by feldspathic litharenites and lithic arenites with fine to medium grain sizes and moderate to good sorting. The reservoir quality varies greatly with a range of porosity from 0.2% to 36.1% and permeability from 0.016 ×10~(–3) μm~2 to 4 301 ×10~(–3) μm~2, which is attributed to complex diagenetic evolution related to sedimentary facies;these include compaction, cementation of calcite, dolomite, siderite and framboidal pyrite in eogenetic stage;further compaction, feldspar dissolution, precipitation of ferrocalcite and ankerite, quartz cements, formation of kaolinite and its illitization, precipitation of albite and nodular pyrite, as well as hydrocarbon charge in mesogenetic stage. The dissolution of feldspar and illitization of kaolinite provide internal sources for the precipitation of quartz cement, while carbonate cements are derived from external sources related to interbedded mudstones and deep fluid. Compaction is the predominant factor in reducing the total porosity, followed by carbonate cementation that leads to strong heterogeneity. Feldspar dissolution and concomitant quartz and clay cementation barely changes the porosity but significantly reduces the permeability.The high-quality reservoirs can be concluded as medium-grained sandstones lying in the central parts of thick underwater distributary channel sandbodies(>2 m) with a high content of detrital quartz but low cement.
文摘The Asmari Formation Oligo-Miocene in age is one of the most important reservoir rocks in SW Iran and Zagros basin and composed of carbonate rocks and locally sandstones and evaporates. In this research, reservoir quality controlling factors have been investigated in a well in one of the oil fields in Dezful Embayment, SW Iran. Based on this research, depositional environment, diagenesis and fracturing have been affected on reservoir quality. 3 distinct depositional settings can be recognized in the studied interval including tidal flat, lagoon, and shoal. Among these depositional setting, shoal environment with ooid grainstone microfacies along with interparticle porosity shows good reservoir characteristics. Diagenetic processes also play an important role on reservoir quality;dolomitization and dissolution have positive effects on porosity and enhances reservoir quality, while cementation, anhydritization and compaction have negative effect on it. Fracturing is another important factor affected on the carbonate reservoirs especially in the Asmari Formation.
文摘The current study aims to ascertain the reservoir characteristics of the Tariki Sandstone Member of the Otaraoa Formation,Taranaki Basin,New Zealand.This study was carried out by integrating the comprehensive petrophysical evaluation,sedimentological and petrographic studies,as well as well log analysis by using data from six wells.The porosity-permeability relationship is used to divide the samples of the Tariki Sandstone Member into reservoir and non-reservoir facies.A thorough petrophysical analysis shows that the maximum porosity values fluctuate between 16.6%and 22.1%,while permeability ranges from 102 mD to 574 mD,which indicates fair to good reservoir quality.Moreover,the Tariki sandstone represents six hydraulic flow units with a high reservoir quality index and flow zone indicator representing good reservoir characteristics.The pore size varies between nano and megapores with dominant macropores.Based on the sedimentological and petrographic analysis,the Tariki Sandstone Member is classified as a combination of subarkose,arkose,and lithic arkose with fine to medium and moderately to moderately well-sorted grains.The main diagenetic factor affecting the reservoir quality is cementation,which occupied all the pores with calcite.On the bright side,the secondary pores are developed due to the dissolution of calcite cement and few grains.The well log analysis demonstrates the presence of low clay volume ranging from 0.3%to 3.1%,fair to good effective porosity values between 13.6%and 15.9%,net pay thickness from 18.29 m to 91.44 m,and hydrocarbon saturation from 56%to 77.9%.The findings from this study revealed that the Tariki Sandstone Member possesses fair to good reservoir quality and hydrocarbon potential,which indicate submarine fans as appealing hydrocarbon reservoirs.This study can be used in similar depositional environments elsewhere in the world.
文摘An integrated geological-petrophysical analysis of the rudist-bearing sequence of the Cretaceous Sarvak Formation is given one giant oilfield,and provides an improved understanding of this main reservoir in the Abadan Plain,in the Zagros Basin,SW Iran.The main objective of this study is to evaluate reservoir potential of the Sarvak Formation,and then to utilize the calibrated well log signature to correlate reservoir potential in un-cored wells.Eight main facies are recognized and categorized in five facies groups:lagoon,shoal,rudist-biostrome,slope,and shallow open marine,deposited on a shelf carbonate platform.Given the distribution of diagenetic products and their effects on pore systems,three diagenetic facies namely,(DF-1)low dissolution and cementation;(DF-2);high dissolution;and(DF-3)high cementation are differentiated.The initial sedimentary characteristics in combination with distribution of diagenetic products play an important role in reservoir quality heterogeneity.The effect of diagenetic processes related to disconformities mainly depends on the facies nature below these surfaces.Grain-dominated facies of shoal and rudist debris,observed below the Cenomanian–Turonian disconformity,are mostly characterized by high dissolution and interconnected pore systems.Finally,depositional and diagenetic facies in the studied wells are correlated by petrophysical well log data,leading to distribution of the reservoir zones.Data obtained can be utilized for efficient reservoir characterization of the Sarvak Formation and its equivalent units in the Arabian Plate.
基金supported by the National Natural Science Foundation of China(Nos.42172148,41830431,and 41902127).
文摘The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geochemical and petrological analyses show that calcite grains have a negative Ce anomaly indicating they formed in the oxidizing environment of seawater. The high carbonate mineral contents in the margin of basin indicate that calcite grains and cores of dolomite grains appear largely to be of detrital origin. The rhombic rims of dolomite grains and dolomite concretions with the δ^(13)C of –15.46‰ and the enrichment of middle rare earth elements were formed during the sulfate-driven anaerobic oxidation of methane. The calcite in radiolarian were related to the microbial sulfate reduction for the abundant anhedral pyrites and δ^(13)C value of –11.34‰. Calcite veins precipitated in the deep burial stage with homogenization temperature of the inclusions ranging from 146.70 ℃ to 182.90 ℃. The pores in shale are mainly organic matter pores with pore size mainly in the range of 1–20 nm in diameter. Carbonate minerals influence the development of pores through offering storage space for organic matter. When calcite contents ranging from 10% to 20%, calcite grains and cement as rigid framework can preserve primary pores. Subsequently, the thermal cracking of liquid petroleum in primary pores will form organic matter pores. The radiolarian were mostly partially filled with calcite, which combining with microcrystalline quartz preserved a high storage capacity.
基金financially supported by the National Natural Science Foundation of China (Grant No. ZX20130157)Science Foundation of China University of Petroleum, Beijing (Grant No. KYJJ2012-01-29)the Key Technologies Research and Development Program of the Chinese Tenth Five-Year Plan (Grant No. 2001BA605A-09)
文摘Reservoir quality varies greatly in the Shahejie Formation in the Dongying Sag. It is essential to analyze the variation and mechanisms of reservoir quality for determining the controlling factors based on cores, porosity measurements and fluid inclusion techniques and so on. The sandstones in the fluvial, (fan) delta-front have the best reservoir quality due to the depositional conditions mechanically controlling the petrology configuration and the primary porosity, and chemically influencing the diagenesis and development of secondary pores. The activity of the boundary faults and the sedimentary facies dominate the variation of reservoir quality in different areas and intervals. The reservoir quality varies with the position of sandstone beds in different vertical models of sandstone and mudstone. This mainly arose from the strong cementation or strong dissolution in the sandstone caused by the diagenesis evolution of adjacent mudstone. With higher oil saturation reservoir quality is better because the hydrocarbon charge favors dissolution and restricts cementation. Diagenesis, depositional conditions and tectonic setting are the key controls of reservoir quality in the Shahejie Formation of the Dongying Sag.
文摘The diagenetic processes of the Tabei sandstones in the Tarim Basin include compaction, cementation (quartz overgrowths, calcite, clay minerals and a minor amount of pyrite), and dissolution of the feldspar and calcite cement. Porosity was reduced by compaction from an assumed original 40% to about 22.1%. Cementation reduced porosity to 26.6%. The Tabei sandstones lost a little more porosity by compaction than by cementation. Quartz cementation, especially syntaxial quartz overgrowth, is a major cause of porosity-loss in many reservoirs in moderately to deeply buried sandstone. Calcite cementation played a key role in the porosity evolution of sandstones. At the early stage of burial, the early calcite cement occupied most of the pore spaces resulting in significant porosity. On the other hand, some primary porosity has been preserved due to incomplete filling or the presence of scattered patches of calcite cement. In addition to calcite, several clay minerals, including illite and chlorite occurred as pore-filling and pore-lining cements. The pore-lining chlorite may have helped in retaining the porosity by preventing the precipitation of syntaxial quartz overgrowths. Illite, which largely occurred as hair-like rims around the grains and bridges on the pore throats, caused a substantial deterioration of penetrability of the reservoir. Calcite cement dissolution was extensive and contributed significantly to the development of secondary porosity.
基金supported by the China National Science & Technology Project(2008ZX05025-006)the China 973 Key Foundation Research Development Project(2009CB219400)
文摘Based on porosity and permeability measurements, mercury porosimetry measurements, thin section analyses, SEM observations, X-ray diffraction (XRD) analysis and granulometric analyses, diagenetic features of reservoir sandstones taken from the Zhuhai formation in the Panyu low-uplift of the Pear River Mouth Basin were examined. This study shows that chlorite cements are one of the most important diagenetic features of reservoir sandstones. The precipitation of chlorite was controlled by multiple factors and its development occurred early in eo-diagenesis and continued till Stage A of middle diagenesis. The precipitation of chlorite at the early stage was mainly affected by the sedimentary environment and provenance. Abundant Fe- and Mg-rich materials were supplied during the deposition of distributary channel sediments in the deltaic front setting and mainly in alkaline conditions. With the burial depth increasing, smectite and kaolinite tended to be transformed into chlorite. Smectite cements were completely transformed into chlorite in sandstones of the studied area. Volcanic lithics rich in Fe and Mg materials were dissolved and released Fe2+ and Mg 2+ into the pore water. These cations precipitated as chlorite cements in middle diagenesis in an alkaline diagenetic environment. Chlorite coatings acted as porosity and permeability, thus helping preserve cements in the chlorite cemented sandstones. The reservoir quality of chlorite cemented sandstones is much better than sandstones without chlorite cements. Chlorite cements play an important role in the reservoir evolution that was mainly characterized by preserving intergranular porosity and forming better pore-throat structures of sandstones.
基金Project(2006AA09Z336) supported by the National High-Tech Research and Development Program of China
文摘Petrographic analysis combined with various techniques, such as scanning electron microscopy and X-ray diffraction, was used to assess the timing of growth and original mineral cements, the controls on reservoir and reservoir quality of the fourth member sandstones of Shahejie formation (Es4). The Es4 sandstones are mostly arkose and lithic arkose, rarely feldspathic litharenite, with an average mass fraction of quartz 51.6%, feldspar 33.8% and rock fragments 14.6% (Q51.6F33.8R14.6). They have an average framework composition (mass fraction) of quartz 57.10%, K-feldspar 5.76%, sodium-calcium feldspar 13.00%, calcite 5.77%, dolomite 5.63%, siderite 0.95%, pyrite 0.30%, anhydrite 0.04%, and clay mineral 11.46%. The diagenentic minerals typically include kaolinite, illite-smectite (I/S), illite, chlorite, authigenetic quartz and feldspar, and carbonate and pyrite. Es4 sandstone has undergone stages A and B of eodiagenesis, and now, it is experiencing stage A of mesodiagenesis. Reservoir quality is predominantly controlled by the mechanical compaction, for example, 45.65% of the original porosity loss is related to compaction. The original porosity loss related with cementation is only 26.00%. The reservoir quality is improved as a result of dissolution of feldspar, rock fragment and so forth. The porosity evolved from dissolution varies from 3% to 4%.
基金National Natural Science Foundation of China(Grant No.42002133,42072150)Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ003)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-06)for the financial supports and permissions to publish this paper
文摘Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oil and gas in fine-grained rocks.However,due to the resolution limit of conventional logs,it is challenging to recognize the features of centimeter-scale laminae.To close this gap,complementary studies,including core observation,thin section,X-ray diffraction(XRD),conventional log analysis,and slabs of image logs,were conducted to unravel the centimeter-scale laminae.The laminae recognition models were built using well logs.The fine-grained rocks can be divided into laminated rocks(lamina thickness of<0.01 m),layered rocks(0.01-0.1 m),and massive rocks(no layer or layer spacing of>0.1 m)according to the laminae scale from core observations.According to the mineral superposition assemblages from thin-section observations,the laminated rocks can be further divided into binary,ternary,and multiple structures.The typical mineral components,slabs,and T2spectrum distributions of various lamina types are unraveled.The core can identify the centimeter-millimeter-scale laminae,and the thin section can identify the millimeter-micrometer-scale laminae.Furthermore,they can detect mineral types and their superposition sequence.Conventional logs can identify the meter-scale layers,whereas image logs and related slabs can identify the laminae variations at millimeter-centimeter scales.Therefore,the slab of image logs combined with thin sections can identify laminae assemblage characteristics,including the thickness and vertical assemblage.The identification and classification of lamina structure of various scales on a single well can be predicted using conventional logs,image logs,and slabs combined with thin sections.The layered rocks have better reservoir quality and oil-bearing potential than the massive and laminated rocks.The laminated rocks’binary lamina is better than the ternary and multiple layers due to the high content of felsic minerals.The abovementioned results build the prediction model for multiscale laminae structure using well logs,helping sweet spots prediction in the Permian Lucaogou Formation in the Jimusar Sag and fine-grained sedimentary rocks worldwide.
文摘The Kimmeridgian-Tithonian aged Arab Formation, as the main reservoir of the Jurassic succession in the Balal oilfield, located in the offshore region of the Iranian sector of the Persian Gulf, is investigated in this study. The formation is composed of dolomites and limestones with anhydrite interbeds. Based on detailed petrographic studies, six microfacies are recognized, which are classified in four sub-environments including supratidal, intertidal, lagoonal and the high energy shoal of a homoclinal carbonate ramp. The main diagenetic features of the studied succession include dolomitization, anhydritization, cementation, micritization, fracturing and compaction. Based on stable isotope data, dolomitization of the upper Arab carbonates is related to sabkha settings (i.e. evaporative type). In terms of sequence stratigraphy, three shallowing-upward sequences are recognized, based on core and wireline log data from four wells of the studied field. Considering depositional and diagenetic effects on the reservoir quality, the studied facies are classified into eight reservoir rock types (RRT) with distinct reservoir qualities. Dolomitization has played a major role in reservoir quality enhancement, whereas anhydritization, carbonate cementation, and compaction have damaged the pore throat network. Distribution of the recognized RRTs in time and space are discussed within the context of a sequence stratigraphic framework.
文摘Three productive layers have been proved in the Tertiary sequence of Tarim basin. At depths of more than 5 000 m, the Tertiary reservoir sandstones or Northern Tarim is found to have porosities greater than 15% and permeabilities up to 1 000×10-3μm2.These pores are intergrauular and appear to be primary that bave survived rrom compaction and cementation. Based on the lithology data, physical properties and pere conriguration as well as characteristics of oil and gas production, tbe reservoir quality of 8andstones was evaluated and divided into three ranks. The reservoir quaIity of Tertiary sandstone bodies is also depeudent upon diagenetic processes. The author proposes a porosity evolutiou model to explain the origin of primary porosity preservation. Several factors may have contributed to POrosity preservation: rapid burial, low paleogeothermal gradient, early iron oxidation and chlorite coatiug, partlal Pore filling by early calcite and gyp-sum.
基金sponsored by BG, BP, Chevron, Conoco Phillips, DONG Energy, E. ON, ENI, Petrobras, Petronas, Statoil and Tullow Oil at Durham University is thanked for funding this research
文摘The Triassic fluvial sandstones of the Skagerrak Formation were deposited in a series of salt-walled mini-basins and act as important hydrocarbon reservoirs for several high-pressure, high-temperature(HPHT) fields in the Central Graben, North Sea. The HPHT reservoirs exhibit excellent reservoir quality considering their depth of burial and hence have been of high interest for hydrocarbon exploration. This research uses a multidisciplinary approach to assess the Skagerrak Formation fluvial reservoir quality from the Seagull field incorporating core analysis, petrography, electron microscopy, XRD analysis, fluid inclusion appraisal and burial history modelling. Halokinesis and salt withdrawal at the margin of the saltwalled mini-basin induced early disaggregation bands and fractures at shallow burial and led to increased influx of meteoric water and clay mineral infiltration from overlying sedimentation. The density of disaggregation bands correlates with the occurrence and magnitude of pore-filling authigenic clay minerals, concentrated along the margin of the saltwalled mini-basin. The fluvial channel sandstones of the Skagerrak Formation are subject to strong intra-basinal spatial reservoir quality variations despite diagenesis and low vertical effective stress having played a favourable role in arresting porosity loss.
基金Supported by the NSFC Innovative Research Group on Oil and Gas Accumulation Mechanism(41821002)Major Science and Technology Project of PetroChina(2017E-0401)China Postdoctoral Science Foundation(2019M662465)。
文摘The characteristics and genesis of the calcite veins in Carboniferous basalt in the east slope of Mahu Sag,Junggar Basin are investigated based on observation of cores and thin sections;analyses of X-ray fluorescence,in situ major,trace and rare earth elements(REE),carbon,oxygen and strontium isotopes,fluid inclusions,as well as basin modeling.There are three periods of calcite fillings.The Period I calcite is characterized by low Mn content,flat REE pattern,strong negative cerium(Ce)anomaly,weak to moderate negative Eu anomaly,and light carbon isotopic composition,indicating the formation of the calcite was affected by meteoric water.The Period II calcite shows higher Mn and light REE contents,weak positive Ce anomaly and slight positive europium(Eu)anomaly,and a little heavier carbon isotopic composition and slightly lower strontium isotope ratio than the Period I calcite,suggesting that deep diagenetic fluids affected the formation of the Period II calcite to some extent.The Period III calcite is rich in iron and manganese and has REE pattern similar to that of the Period II calcite,but the cerium and europium enomalies vary significantly.The Period I and II calcites were formed in shallow diagenetic environment at approximately 250–260 Ma,corresponding to Late Hercynian orogeny at Late Permian.The PeriodⅢcalcite was probably formed in the Indo-China movement during Late Triassic.It is believed that the precipitation of calcite in basalt fractures near unconformity was related to leaching and dissolution of carbonates in the overlying Lower Permian Fengcheng Formation by meteoric water,which destructed the Carboniferous weathering crust reservoirs in early stage.Relatively high quality reservoirs could be developed in positions with weak filling and strong late dissolution,such as structural high parts with Fengcheng Formation missing,distant strata from Fengcheng Formation vertically,buried hills inside lake basin,etc.
基金supported by the National Major Science and Technology Projects of China(No.2016ZX05033-001002)the National Natural Science Foundation of China(No.41272155)the China Scholarship Council。
文摘The Upper Paleogene lacustrine fine-grained sandstones in the hinterlands of the northern Qaidam Basin mainly contain two sweet spot intervals.Fracture/fault,microfacies,petrology,pore features,diagenesis,etc.,were innovatively combined to confirm the controlling factors on the reservoir quality of shallow delta-lacustrine fine-grained sandstones.The diagenesis of the original lake/surface/meteoric freshwater and acidic fluids related to the faults and unconformity occurred in an open geochemical system.Comprehensive analysis shows that the Upper Paleogene fine-grained sandstones were primarily formed in the early diagenetic B substage to the middle diagenetic A substage.Reservoir quality was controlled by fault systems,microfacies,burial-thermal history,diagenesis,hydrocarbon charging events(HCE),and abnormally high pressure.Shallow and deep double fault systems are the pathways for fluid flow and hydrocarbon migration.Sandstones developed in the high energy settings such as overwater(ODC)and underwater distributary channels(UDC)provide the material foundation for reservoirs.Moderate burial depth(3000-4000 m),moderate geothermal field(2.7-3.2℃/100 m),and late HCE(later than E3)represent the important factors to protect and improve pore volume.Meteoric freshwater with high concentrations of CO_(2)and organic acids from thermal decarboxylation are the main fluids leading to the dissolution and reformation of feldspar,rock fragments,calcite and anhydrite cements.Abnormally high pressure caused by the undercompaction in a large set of argillaceous rocks is the key to form high-quality reservoirs.Abnormal pressure zones reduced and inhibited the damage of compaction and quartz overgrowth to reservoir pores,allowing them to be better preserved.A reservoir quality evaluation model with bidirectional migration pathways,rich in clay minerals,poor in cements,superimposed dissolution and abnormally high pressure was proposed for the ODC/UDC finegrained sandstones.This model will facilitate the future development of fine-grained sandstone reservoirs both in the Upper Paleogene of the Qaidam Basin and elsewhere.
基金reservoir research project of PetroChina(No.2021DJ0302).
文摘The Keshen gas field is one of the most important natural gas supply sources in the Tarim basin,western China.The main gas producing interval there is the Lower Cretaceous Bashijiqike Formation(K1bs),it is an ultra-deep tight reservoir whose buried depth exceeds 6000 m,and it shows a low matrix porosity(<10%)and extremely low matrix permeability(<0.1mD).However,this reservoir can supply extremely high and stable gas production due to improvement of reservoir quality by tectonism and fluid.Based on tectonic evolution analysis by plenty of lab data of core plugs or thin sections,the enhancement models of tectonism and fluid are built,evidence suggests both tectonism and fluid improve the reservoir quality greatly.Tectonic evolution produces lots of natural fractures in 3stages which promote the ultra-deep tight reservoir permeability 10–200 times,then,testing results of new boreholes without fracturing show reservoir permeability underground can reach 20 mD.Furthermore,fluid dissolution increases reservoir porosity 1–2 times,the main dissolved mineral is feldspar,all fluid dissolution came from the unconformity controlling the dissolution distance.Tectonism and fluid interact on each other:Tectonism controls fracture distribution and types of diagenic fluid in reservoir,but fluids influence fracture cements and dissolution.Both tectonic folding and the fluid flow control the sweet point reservoir located in upper 150 m formation.
基金supported by the Ministry of Science and Higher Education of the Russian Federation under agreement No.075-15-2022-299 within the framework of the development program for a world-class Research Center“Efficient development of the global liquid hydrocarbon reserves”.
文摘The results of integrated sedimentology,petrography,and petrophysical study of the Upper Devonian(Middle Famennian)Dankovo-Lebedyansky carbonates from Southeast Tatarstan of the Volga-Ural Basin revealed a variety of microfacies and diagenetic events that impacted the reservoir quality.Although our earlier study documented microfacies analysis and depositional environments,none of the studies focused on diagenesis,microfacies interaction,and their controls on the studied sediment's reservoir quality.Based on petrographic and microfacies analyses,the seven identified microfacies types are peloidal grainstone MF 1,cemented bioclastic peloidal grainstone MF 2,echinoderm-concentrated packstone MF 3,algae packstone MF 4,bioclastic wackestone MF 5,whole-fossil wackestone MF 6,and dolomite MF 7.For the investigated sediments,a gently deepening carbonate ramp depositional model with an inner,middle,and outer ramp setting is proposed.The observed diagenetic events in this study include micritization,calcite cementation(six cement types),dolomitization(six dolomite types),dissolution(fabric and non-fabric-selective dissolution),compaction,and microfracturing.The identified microfacies were classified into three distinct classes based on their petrophysical characteristics.MF 1 and MF 7 are microfacies types with the best reservoir quality.MF 3 and MF 4 are microfacies types of moderate reservoir quality.MF 2,MF 5,and MF 6 are microfacies types with poor or non-reservoir quality.Calcite cementation,micritization,and compaction are the primary diagenetic modifications responsible for porosity reduction.Moldic pores created by dissolution are a significant porosityimproving process.Porosity is locally enhanced by stylolite and microfractures.Dolomitization improved reservoir quality by creating intercrystalline and vuggy porosity.Understanding the impact of microfacies and diagenesis on reservoir quality is crucial for understanding reservoir properties in nearby fields with similar settings.
基金the University of Aberdeen for an Elphinstone PhD ScholarshipNiger Delta Development Commission(NDDC)for financial assistance。
文摘The Miocene sandstone deposits in the Southern California region are important hydrocarbon reservoirs. However, their development has been very challenging due to the wide variability in their reservoir quality. These sandstones have been studied from three sedimentary basins by petrographic thin section, scanning electron microscope, and X-ray diffraction to evaluate and compare the influence of diagenesis on their reservoir quality in these basins. Four petrofacies, namely P1(sand injectite or dyke), P2(sub-marine fan), P3(turbidite and marine-influenced alluvial fans) and P4(continental sandstones) have been identified. P1 and P2 characterise the sandstones in the San Joaquin forearc basin and are affected by kaolinite and extensive early calcite diagenesis. P3 and P4 delineate the sandstones in the Cajon Valley and Salton Trough strike-slip basins and are dominated by smectite, mixed illite-smectite, early calcite and late calcite diagenesis. Early calcite cement in P3 and P4 is in lower proportion than in P1 and P2. Although the dissolution of these sandstones by acidic fluids did not have a pattern, it, however, has the most considerable influence on P2 creating moldic pores which are expected to increase pore connectivity. The relatively abundant dissolution pores in P2, together with the absence of late authigenic calcite and illite clay in comparison to the other petrofacies studied are likely to make this sandstone facies the best reservoir targets in the Southern California region. These rocks are analogous to producing reservoirs in the region. However, because, petroleum accumulation in these reservoirs are compartmentalized by early calcite cement, maximum recovery using acidified fluids is recommended to dissolve the calcite-filled pores in order to increase connectivity of their pore network and enhance flow potential.
基金supported by the China National Science and Technology Major Project (No. 2011ZX05009-002)
文摘Based on observations made on cores and cuttings from several wells in the lowermost part of the third member of the Shahejie Formation, several rock types, specifically clast-supported rudstone, matrix-supported rudstone, mixed-source rudstone, calcisiltite/calcarenite, massive calci- lutite and laminated calcilutite, have been identified in the Shulu sag. According to the sedimentary structures and distribution characteristics of these rocks, the carbonate breccias fall into two cate- gories, based on their origins: one formed by fan-delta channel sedimentation, whereas the other formed by earthquake-induced slump fan deposition. Clast-supported rudstone and matrix- supported rudstone are the main lithologies deposited by braided rivers in the fan delta plain and front, of which the pore space is mainly dissolution pores within gravels and tectonic fissures. Clast- supported rudstone, matrix-supported rudstone and mixed-source rudstone are the main lithologies of the earthquake-induced slump fans. These carbonate breccias developed along with soft-sediment deformation structures, which are interpreted as seismites and are widely distributed in the sag, in which intercrystalline pores, intergranular pores and fissures created from diagenetic shrinkage are developed. The two kinds of rudstones have different reservoir characteristics and oil/gas testing re- suits. The rudstones generated in the fan delta have higher porosity and permeability, as well as bet- ter oil/gas testing results. Thus, they are key targets for petroleum exploration.