The sedimentation process is the most important problems that affects directly the performance of reservoirs due to the reduction of the storage capacity and possible problems effecting the operation. Thus periodic as...The sedimentation process is the most important problems that affects directly the performance of reservoirs due to the reduction of the storage capacity and possible problems effecting the operation. Thus periodic assessment of the storage capacity and determining sediment deposition patterns is an important issue for operation and management of the reservoirs. In this study, bathymetric survey results and an analytical approach had been used to assess the characteristics of sedimentation and estimate the useful life of Mosul Reservoir. It is located on the Tigris River in the north of Iraq. The water surface area of its reservoir is 380 km2 with a designed storage capacity of 11.11 km3 at a maximum operating level (330 m a.s.l). The dam started operating in 1986. No detailed study was yet carried out to assess its reservoir. The present study indicated that the annual reduction rate in the dead and live storage capacities of the reservoir is 0.786% and 0.276% respectively. The observed results (bathymetric survey) and algebraic formula show approximately that the useful life of Mosul dam reservoir is about 125 years. Furthermore, the stage-storage capacity curves for the future periods (prediction curves) were established using bathymetric survey data.展开更多
The biogeochemical cycles of sulphur(S),iron(Fe)and nitrogen(N)elements play a key role in the reservoir ecosystem.However,the spatial positioning and interrelationship of S,Fe and N cycles in the reservoir sediment p...The biogeochemical cycles of sulphur(S),iron(Fe)and nitrogen(N)elements play a key role in the reservoir ecosystem.However,the spatial positioning and interrelationship of S,Fe and N cycles in the reservoir sediment profile have not been explored to a greater extent.Here,we measure the gradients of Fe^(2+),SO_(4)^(2-),NO_(3)^(-),NH_(4)^(+),DOC,TC and TN in the pore water of the sediment,and combining the vertical distribution of the functional microorganisms involved in S,Fe and N cyclings in the sediments to determine the redox stratification in the sediment.It is found that the geochemical gradient of S,Fe and N of the reservoir sedimentary column is mainly defined by the redox process involved in the related functional microorganisms.According to the type of electron acceptor,the sediment profile is divided into 3 redox intervals,namely aerobic respiration(0–10 cm),denitrification/iron reduction(10–28 cm)and sulfate reduction(28–32 cm).In the aerobic respiration zone,NH_(4)^(+)is oxidized by aerobic AOB to NO_(3)^(-)(0–5 cm),and Fe^(2+)is oxidized by microaerobic FeRB to Fe^(3+)(3–10 cm).In the denitrification/iron reduction zone,Acinetobacter and Pseudomonas,as the dominant NRB genera,may use nitrate as an electron acceptor to oxidize Fe^(2+)(11–16 cm).The dominant genera in SOB,such as Sulfururvum,Thiobacillus and Thioalkalispira,may use nitrate as an electron acceptor to oxidize sulfide,leading to SO_(4)^(2-)accumulation(14–24 cm).In the sulfate reduction zone,SO_(4)^(2-)is reduced by SRB.This study found that functional microorganisms forming comprehensive local ecological structures to adapt to changing geochemical conditions,and which would be potentially important for the degradation and preservation of C and the fate of many nutrients and contaminants in reservoirs.展开更多
According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research...According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research results achieved in the demonstration stage.It is indicated through analysis that the reservoir sediment deposition and downstream river channel scouring during 8-year impoundment and operation are still within the original forecast,so the original forecasting results are feasible.The further observation and comparison should be conducted because the comparison between the observed data and the original forecast is not so sufficient in time and the prototype observation and related research work should be strengthened in the future.展开更多
The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and ...The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and 0.70 m deep channel. A block was built at the end of the channel to work as a dam to impound water. The channel was supplied with drainage pipes on both sides to release water out in a manner similar to what happens in reservoirs. The bed of the channel was filled with sand of 0.80 mm median sieve diameter and 0.72 geometric standard deviation. The slope was 0.0093 for all experiments. Two sizes of sand were used representing the sediment. The median diameter and geometric standard deviation of the first were 0.365 mm and 0.46 mm, respectively. The second sample had 0.65 mm median diameter and 0.67 standard deviation. A total of 70 experiments were conducted in two groups to examine effects of sediment transport rate, particle size of sediment and flow velocity on aggradation characteristics. The results showed that there was a strong linear direct relationship between aggradation elements (length and depth) with the rate of sediment transport. Groups of dimensionless parameters affecting the aggradation characteristics were used to develop empirical equations to predict the length, maximum depth of aggradation and predict transient bed profile. The results of empirical approach were compared with the measurement data and previous numerical method. The results indicated that the percentage error was 19% to 31% for length of aggradation and -21% to 26% for maximum depth of aggradation. The results also showed that the sediment materials were deposited closer to the body of the dam when the released water from the dam is higher than the inflow.展开更多
The Xiaolangdi Hydro-Project is one of the large projects on the main stem of the Middle Yellow River. It has been operated for more than 10 years, since its impoundment in October, 1999. The reservoir has trapped 2.8...The Xiaolangdi Hydro-Project is one of the large projects on the main stem of the Middle Yellow River. It has been operated for more than 10 years, since its impoundment in October, 1999. The reservoir has trapped 2.833 × 10^9 m3 of sediment, and caused the total erosion of 1.891 × 10^9t in the Lower Yellow River from October, 1999 through October, 2010. Not only the serious atrophied situation of the Lower Yellow River (LYR) has been resuscitating, but also many new phenomena of sediment transport and behaviors of channel re-establishing are coming into being. They are illustrated and discussed in detail in this paper.展开更多
The permeability of a natural gas hydrate reservoir is a critical parameter associated with gas hydrate production.Upon producing gas from a hydrate reservoir via depressurization,the permeability of sediments changes...The permeability of a natural gas hydrate reservoir is a critical parameter associated with gas hydrate production.Upon producing gas from a hydrate reservoir via depressurization,the permeability of sediments changes in two ways with hydrate dissociation,increasing with more pore space released from hydrate and decreasing due to pore compression by stronger effective stress related to depressurization.In order to study the evolution of sediment permeability during the production process with the depressurization method,an improved pore network model(PNM)method is developed to establish the permeability change model.In this model,permeability change induced by hydrate dissociation is investigated under hydrate occurrence morphology of pore filling and grain coating.The results obtained show that hydrate occurrence in sediment pore is with significant influence on permeability change.Within a reasonable degree of pore compression in field trial,the effect of pore space release on the reservoir permeability is greater than that of pore compression.The permeability of hydrate containing sediments keeps increasing in the course of gas production,no matter with what hydrate occurrence in sediment pore.展开更多
This paper analyzes the situation at the Iffezheim barrage along the fiver Rhine.Since the start of operation in 1977 several million cubic meters of very fine sediment have been deposited in the reservoir.Be- cause o...This paper analyzes the situation at the Iffezheim barrage along the fiver Rhine.Since the start of operation in 1977 several million cubic meters of very fine sediment have been deposited in the reservoir.Be- cause of stability problems and reduced safety in the event of flooding,an extraction of the material is neces- sary.Chemical assays showed a high concentration of HCB.Therefore flushing without any additional measures is not appropriate.In order to leam more about the morphological and chemical in...展开更多
This study aims to quantitatively assess the total organic carbon(TOC)and total nitrogen(TN)content of reservoir sediments in southwest China using Fourier transform infrared spectroscopy(FTIRS).FTIRS measurements wer...This study aims to quantitatively assess the total organic carbon(TOC)and total nitrogen(TN)content of reservoir sediments in southwest China using Fourier transform infrared spectroscopy(FTIRS).FTIRS measurements were performed on 187 sediment samples from four reservoirs to develop calibration models that relate FTIR spectral information with conventional property concentrations using partial least squares regression(PLSR).Robust calibration models were established for TOC and TN content.The external validation of these models yielded a significant correlation between FTIR-inferred and conventionally measured concentrations of R^(2)=0.88 for TOC,R^(2)=0.90 for TN.This method can be performed with a small sample size and is non-destructive throughout the simple measurement process.The TOC and TN content in the sediment can be determined with high effectiveness without being overly expensive,making it an advantageous method when measuring a large number of samples.展开更多
文摘The sedimentation process is the most important problems that affects directly the performance of reservoirs due to the reduction of the storage capacity and possible problems effecting the operation. Thus periodic assessment of the storage capacity and determining sediment deposition patterns is an important issue for operation and management of the reservoirs. In this study, bathymetric survey results and an analytical approach had been used to assess the characteristics of sedimentation and estimate the useful life of Mosul Reservoir. It is located on the Tigris River in the north of Iraq. The water surface area of its reservoir is 380 km2 with a designed storage capacity of 11.11 km3 at a maximum operating level (330 m a.s.l). The dam started operating in 1986. No detailed study was yet carried out to assess its reservoir. The present study indicated that the annual reduction rate in the dead and live storage capacities of the reservoir is 0.786% and 0.276% respectively. The observed results (bathymetric survey) and algebraic formula show approximately that the useful life of Mosul dam reservoir is about 125 years. Furthermore, the stage-storage capacity curves for the future periods (prediction curves) were established using bathymetric survey data.
基金sponsored by National Key Research and Development Project by MOST of China(grant No.2016YFA0601003)Shanghai Science and Technology Development Foundation(No.19010500100).
文摘The biogeochemical cycles of sulphur(S),iron(Fe)and nitrogen(N)elements play a key role in the reservoir ecosystem.However,the spatial positioning and interrelationship of S,Fe and N cycles in the reservoir sediment profile have not been explored to a greater extent.Here,we measure the gradients of Fe^(2+),SO_(4)^(2-),NO_(3)^(-),NH_(4)^(+),DOC,TC and TN in the pore water of the sediment,and combining the vertical distribution of the functional microorganisms involved in S,Fe and N cyclings in the sediments to determine the redox stratification in the sediment.It is found that the geochemical gradient of S,Fe and N of the reservoir sedimentary column is mainly defined by the redox process involved in the related functional microorganisms.According to the type of electron acceptor,the sediment profile is divided into 3 redox intervals,namely aerobic respiration(0–10 cm),denitrification/iron reduction(10–28 cm)and sulfate reduction(28–32 cm).In the aerobic respiration zone,NH_(4)^(+)is oxidized by aerobic AOB to NO_(3)^(-)(0–5 cm),and Fe^(2+)is oxidized by microaerobic FeRB to Fe^(3+)(3–10 cm).In the denitrification/iron reduction zone,Acinetobacter and Pseudomonas,as the dominant NRB genera,may use nitrate as an electron acceptor to oxidize Fe^(2+)(11–16 cm).The dominant genera in SOB,such as Sulfururvum,Thiobacillus and Thioalkalispira,may use nitrate as an electron acceptor to oxidize sulfide,leading to SO_(4)^(2-)accumulation(14–24 cm).In the sulfate reduction zone,SO_(4)^(2-)is reduced by SRB.This study found that functional microorganisms forming comprehensive local ecological structures to adapt to changing geochemical conditions,and which would be potentially important for the degradation and preservation of C and the fate of many nutrients and contaminants in reservoirs.
基金support from the Technology Pillar Program during the"Eleventh Five-year Plan"Period (No.2006BAB05B02No.2006BAB05B03) are acknowledged
文摘According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research results achieved in the demonstration stage.It is indicated through analysis that the reservoir sediment deposition and downstream river channel scouring during 8-year impoundment and operation are still within the original forecast,so the original forecasting results are feasible.The further observation and comparison should be conducted because the comparison between the observed data and the original forecast is not so sufficient in time and the prototype observation and related research work should be strengthened in the future.
文摘The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and 0.70 m deep channel. A block was built at the end of the channel to work as a dam to impound water. The channel was supplied with drainage pipes on both sides to release water out in a manner similar to what happens in reservoirs. The bed of the channel was filled with sand of 0.80 mm median sieve diameter and 0.72 geometric standard deviation. The slope was 0.0093 for all experiments. Two sizes of sand were used representing the sediment. The median diameter and geometric standard deviation of the first were 0.365 mm and 0.46 mm, respectively. The second sample had 0.65 mm median diameter and 0.67 standard deviation. A total of 70 experiments were conducted in two groups to examine effects of sediment transport rate, particle size of sediment and flow velocity on aggradation characteristics. The results showed that there was a strong linear direct relationship between aggradation elements (length and depth) with the rate of sediment transport. Groups of dimensionless parameters affecting the aggradation characteristics were used to develop empirical equations to predict the length, maximum depth of aggradation and predict transient bed profile. The results of empirical approach were compared with the measurement data and previous numerical method. The results indicated that the percentage error was 19% to 31% for length of aggradation and -21% to 26% for maximum depth of aggradation. The results also showed that the sediment materials were deposited closer to the body of the dam when the released water from the dam is higher than the inflow.
基金Project supported by the National Basic Research and Development Program of China(973Program,Grant No.2011CB409901)the"12th Five-Year Plan"to Support Science and Technology Project(Grant No.2012BAB02B01)the Special Funds for Public Welfare Project(Grant No.200901014)
文摘The Xiaolangdi Hydro-Project is one of the large projects on the main stem of the Middle Yellow River. It has been operated for more than 10 years, since its impoundment in October, 1999. The reservoir has trapped 2.833 × 10^9 m3 of sediment, and caused the total erosion of 1.891 × 10^9t in the Lower Yellow River from October, 1999 through October, 2010. Not only the serious atrophied situation of the Lower Yellow River (LYR) has been resuscitating, but also many new phenomena of sediment transport and behaviors of channel re-establishing are coming into being. They are illustrated and discussed in detail in this paper.
基金This work was co-supported by the Ministry of Science and Technology of China(2017YFC0307603)the China Geological Survey project(DD20190234).
文摘The permeability of a natural gas hydrate reservoir is a critical parameter associated with gas hydrate production.Upon producing gas from a hydrate reservoir via depressurization,the permeability of sediments changes in two ways with hydrate dissociation,increasing with more pore space released from hydrate and decreasing due to pore compression by stronger effective stress related to depressurization.In order to study the evolution of sediment permeability during the production process with the depressurization method,an improved pore network model(PNM)method is developed to establish the permeability change model.In this model,permeability change induced by hydrate dissociation is investigated under hydrate occurrence morphology of pore filling and grain coating.The results obtained show that hydrate occurrence in sediment pore is with significant influence on permeability change.Within a reasonable degree of pore compression in field trial,the effect of pore space release on the reservoir permeability is greater than that of pore compression.The permeability of hydrate containing sediments keeps increasing in the course of gas production,no matter with what hydrate occurrence in sediment pore.
文摘This paper analyzes the situation at the Iffezheim barrage along the fiver Rhine.Since the start of operation in 1977 several million cubic meters of very fine sediment have been deposited in the reservoir.Be- cause of stability problems and reduced safety in the event of flooding,an extraction of the material is neces- sary.Chemical assays showed a high concentration of HCB.Therefore flushing without any additional measures is not appropriate.In order to leam more about the morphological and chemical in...
基金This work was supported by the National Key Research and Development Program of China(2016YFA0601003)Shanghai Science and Technology Development Foundation(19010500100).
文摘This study aims to quantitatively assess the total organic carbon(TOC)and total nitrogen(TN)content of reservoir sediments in southwest China using Fourier transform infrared spectroscopy(FTIRS).FTIRS measurements were performed on 187 sediment samples from four reservoirs to develop calibration models that relate FTIR spectral information with conventional property concentrations using partial least squares regression(PLSR).Robust calibration models were established for TOC and TN content.The external validation of these models yielded a significant correlation between FTIR-inferred and conventionally measured concentrations of R^(2)=0.88 for TOC,R^(2)=0.90 for TN.This method can be performed with a small sample size and is non-destructive throughout the simple measurement process.The TOC and TN content in the sediment can be determined with high effectiveness without being overly expensive,making it an advantageous method when measuring a large number of samples.