Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three...Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three Gorges Reservoir were calculated by the dynamic statistic model of crop growth.The results showed that the temperature in Three Gorges Reservoir was fluctuant decreased before late 1980s,and warmed rapidly after the late 1980s.The precipitation had little change before the late 1990s and had a slight decrease after the late 1990s.Sunshine hours were more in 1960s and 1970s,and then it changed little after 1980s.After water storage,the temperature increased in Three Gorges Reservoir as a whole.The precipitation decreased in the south of Three Gorges Reservoir,while it increased in the northwest of Three Gorges Reservoir.The sunshine hours were reduced except that in the vicinity of Dianjiang.After water storage,climatic potential productivity of rice decreased in the northwest and the northeast,while it increased in the south of Three Gorges Reservoir.The climatic potential productivity of corn decreased in the northeast and the southwest,but increased in the rest of Three Gorges Reservoir.The climatic potential productivity of winter wheat increased almost in total.展开更多
Water quality index of reservoir source water were tracked during three years in a north frigid area,the effect on supplied water quality was also studied.Based on the analysis of the monitoring data during the same s...Water quality index of reservoir source water were tracked during three years in a north frigid area,the effect on supplied water quality was also studied.Based on the analysis of the monitoring data during the same season,the reservoir source water had typical and seasonal variation characteristics that was divided into four periods including the icebound period,spring period(or peach blossom period),stable period in summer and autumn and winter period.The icebound period was charactered by the typical low temperature and turbidity,pH and oxygen consumption decreased gradually showed that the gradually anaerobic trend existed in the reservoir.In May as the reservoir completely thawed,upstream water inflow and the total pollutant in the reservoir gradually increased,but the bottom of reservoir bottom was stable in the anaerobic state temporarily.The state completely disappeared,various index increased significantly in the middle of July.The water had high chroma characteristics,chroma and turbidity increased significantly in the summer and autumn(7-11months),but stability of water quality was poor because of rainfall.The reservoir gradually froze after the middle of November and the flow of water decreased.The peak of chroma appeared a month later than the water temperature.Due to the water turbidity was low,and the floc was small and light,the conventional water purification process design based on removal of turbidity achieved removal of chroma through a lot dosing of coagulant.展开更多
According to the current situation and development planning of water resources in Jiangjin District of Three Gorge Reservoir Area at the upper reaches of Yangtze River,by combining with social needs,through the survey...According to the current situation and development planning of water resources in Jiangjin District of Three Gorge Reservoir Area at the upper reaches of Yangtze River,by combining with social needs,through the survey on pollution source and analysis of water quality,based on the Report of Water Function Division of Jiangjin District(2005) ,the adjustment and revision have been conducted on water function divisions,and corresponding protection targets and countermeasures for water resources have been proposed,so that the water function division can comply with the development situation of Jiangjin District,providing a reliable reference for the protection and reasonable utilization of water resources,enhancing the unified and effective supervision of water resources,promoting the sustainable use of water resources in Jiangjin District,and ensuring the sustainable development of regional society and environment.展开更多
Small surface reservoirs play an important role of providing ready and convenient source of water for various uses in semi-arid areas which are characterized by erratic and low rainfall. Lack of current data on reserv...Small surface reservoirs play an important role of providing ready and convenient source of water for various uses in semi-arid areas which are characterized by erratic and low rainfall. Lack of current data on reservoir capacity loss due to sedimentation is one of the challenges to the sustainable management of surface reservoirs. The study investigated the capacity loss due to sedimentation from 2000-2012, and estimated the trap efficiency of the Mutangi reservoir which is located in semi-arid Chivi, Southern of Zimbabwe. Hydrographic surveys, grab sampling and water depth-capacity methods were used to determine the capacity of the dam as of 2012. To compute capacity loss from 2000 to 2012, the 2000 and 2012 dam capacities were compared whilst the trap efficiency of the reservoir was determined using a set of empirical models that relates trap efficiency to the capacity-watershed area ratio and capacity-inflow ratio. The results show that Mutangi reservoir has a trap efficiency of 95% - 98% (av = 96.4%) and has lost 37% of its capacity due to sedimentation in 12 years (2000 and 2012). Rates of sedimentation were 8539 t·yr-1, 9110?t·yr-1 and 8265 t·yr-1 for the hydrographic survey, grab sampling and water depth-capacity method respectively, and the little difference in these figures demonstrates that any method can be used to determine sedimentation rates. The area specific sediment yield (ASY) ranged from 14 - 15.5 t·ha-1·yr-1 (av = 14.956 t·ha-1·yr-1). At the current rate of sedimentation the projected dead level of the reservoir will be lost to sedimentation in 8 years while the useful life of the reservoir is estimated to be 30 years. Capacity loss due to sedimentation is further complicating the already strained water scarcity situation in semi-arid areas and management decisions should be made based on the current sedimentation rates estimated by different methods. These results imply that management practices that reduce erosion, hence sedimentation in these small reservoirs should be practiced in order to prolong their lifespan.展开更多
【目的】三峡库区消落带受周期性的水位涨落及冬季长时间深水淹没影响,碳汇能力遭受严重破坏。如何恢复并充分发挥消落带生态系统的碳汇潜力,成为三峡库区生态治理的关键议题。【方法】针对复杂水位变化挑战,提出以林塘模式修复消落带...【目的】三峡库区消落带受周期性的水位涨落及冬季长时间深水淹没影响,碳汇能力遭受严重破坏。如何恢复并充分发挥消落带生态系统的碳汇潜力,成为三峡库区生态治理的关键议题。【方法】针对复杂水位变化挑战,提出以林塘模式修复消落带生态系统并提升碳汇能力的技术框架,选取位于三峡库区腹心的大浪坝消落带开展实证研究。运用CASA模型测算修复前后大浪坝消落带的净初级生产力(net primary productivity,NPP),基于植被生物量数据计算修复后大浪坝消落带与未修复对照组内不同高程带的碳汇能力,评估林塘碳汇系统的可持续效益。【结果】修复后大浪坝消落带的碳汇能力随时间推移明显提升,NPP由2012年的154.4 g C·m^(2)·a^(-1)增长至2016年的182.5 g C·m^(2)·a^(-1);各高程带的碳汇能力均显著高于对照组,并呈现出随海拔降低而减弱的趋势,170~175 m高程带碳汇能力达到1.827 kg C/m^(2),160~165 m高程带碳汇能力仅为0.830 kg C/m^(2)。林塘系统增强了生态系统的适应性和复原力,形成了适应水位变化的立体固碳模式并有效提升了碳汇效率。【结论】林塘碳汇系统是应对三峡库区复杂水位变化和长时间深水淹没挑战的适应性探索,显示出景观优化、生物多样性、经济效益与碳汇协同耦合的关键特征。研究成果能够为中国大型工程型水库消落带的治理及碳增汇提供科学依据与可复制推广的创新技术模式。展开更多
Based on the field-survey prototype hydrology data in typical years, the effect during the running periods of different dispatch modes of the Three Gorges Reservoir on the water regimes in Dongting Lake area is compar...Based on the field-survey prototype hydrology data in typical years, the effect during the running periods of different dispatch modes of the Three Gorges Reservoir on the water regimes in Dongting Lake area is comparatively analyzed. The results are shown as follows. (1) The influence periods are from 25 May to 10 June, from 1 July to 31 August, from 15 September to 31 October and from December to the next April, among which the influence of the water-supplement dispatch in the dry season is not very sensitive. (2) During the period under the pre-discharge dispatch, the runoff volume slightly increases as well as both the average water level and the highest water level rise in the usual year. While in the wet and dry years, the average increase in the runoff volume is 40.25×1 08 m3 and the average rises of the average water level and the highest water level are both 1.06 m. (3) As for the flood-storage dispatch, the flood volume increases slightly, in the dry and wet years, the flood volume, the average water level and the highest water level averagely reduce by 444.02×108 m3, 2.64 m and 1.42 m respectively. (4) Under the water-storage dispatch, the runoff volume slightly in- creases and the water level heightens in a sort in the usual year. And in the dry and wet years the average decreases in the runoff volume, the average water leve/and the highest water levels are respectively 185.27×108 m3, 3.13 m and 2.14 m. (5) During the period under the water-supplement dispatch, the runoff volume, the average water level and the highest water levels averagely decline by 337.7×108 m3, 1.89 m and 2.39 m respectively in the usual and wet years. However, in the dry year, the runoff volume increases as well as the average and highest water levels slightly go up.展开更多
基金Supported by Operation and Improvement Program of Climate Monitoring,Warning and Assessment Services in Three Gorges Reservoir AreaNational Key Technology R&D Program (2007BAC29B06)+1 种基金Major State Basic Research Development 973 Program (2006CB400503)National Natural Science Foundation of China (40705031)
文摘Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three Gorges Reservoir were calculated by the dynamic statistic model of crop growth.The results showed that the temperature in Three Gorges Reservoir was fluctuant decreased before late 1980s,and warmed rapidly after the late 1980s.The precipitation had little change before the late 1990s and had a slight decrease after the late 1990s.Sunshine hours were more in 1960s and 1970s,and then it changed little after 1980s.After water storage,the temperature increased in Three Gorges Reservoir as a whole.The precipitation decreased in the south of Three Gorges Reservoir,while it increased in the northwest of Three Gorges Reservoir.The sunshine hours were reduced except that in the vicinity of Dianjiang.After water storage,climatic potential productivity of rice decreased in the northwest and the northeast,while it increased in the south of Three Gorges Reservoir.The climatic potential productivity of corn decreased in the northeast and the southwest,but increased in the rest of Three Gorges Reservoir.The climatic potential productivity of winter wheat increased almost in total.
基金Sponsored by the Science and Technology Research Project of Heilongjiang Province Education Department(Grant No.12513088)PromisingYoungsters Training Program of Heilongjiang University of Science and Technology(Grant No.Q20120201)
文摘Water quality index of reservoir source water were tracked during three years in a north frigid area,the effect on supplied water quality was also studied.Based on the analysis of the monitoring data during the same season,the reservoir source water had typical and seasonal variation characteristics that was divided into four periods including the icebound period,spring period(or peach blossom period),stable period in summer and autumn and winter period.The icebound period was charactered by the typical low temperature and turbidity,pH and oxygen consumption decreased gradually showed that the gradually anaerobic trend existed in the reservoir.In May as the reservoir completely thawed,upstream water inflow and the total pollutant in the reservoir gradually increased,but the bottom of reservoir bottom was stable in the anaerobic state temporarily.The state completely disappeared,various index increased significantly in the middle of July.The water had high chroma characteristics,chroma and turbidity increased significantly in the summer and autumn(7-11months),but stability of water quality was poor because of rainfall.The reservoir gradually froze after the middle of November and the flow of water decreased.The peak of chroma appeared a month later than the water temperature.Due to the water turbidity was low,and the floc was small and light,the conventional water purification process design based on removal of turbidity achieved removal of chroma through a lot dosing of coagulant.
基金Supported by Chongqing City Sponsored Project of 2011 That is"Revision of Water Function Division of Chongqing City" [No. 3 of 2011 of Yu Water Resources]~~
文摘According to the current situation and development planning of water resources in Jiangjin District of Three Gorge Reservoir Area at the upper reaches of Yangtze River,by combining with social needs,through the survey on pollution source and analysis of water quality,based on the Report of Water Function Division of Jiangjin District(2005) ,the adjustment and revision have been conducted on water function divisions,and corresponding protection targets and countermeasures for water resources have been proposed,so that the water function division can comply with the development situation of Jiangjin District,providing a reliable reference for the protection and reasonable utilization of water resources,enhancing the unified and effective supervision of water resources,promoting the sustainable use of water resources in Jiangjin District,and ensuring the sustainable development of regional society and environment.
文摘Small surface reservoirs play an important role of providing ready and convenient source of water for various uses in semi-arid areas which are characterized by erratic and low rainfall. Lack of current data on reservoir capacity loss due to sedimentation is one of the challenges to the sustainable management of surface reservoirs. The study investigated the capacity loss due to sedimentation from 2000-2012, and estimated the trap efficiency of the Mutangi reservoir which is located in semi-arid Chivi, Southern of Zimbabwe. Hydrographic surveys, grab sampling and water depth-capacity methods were used to determine the capacity of the dam as of 2012. To compute capacity loss from 2000 to 2012, the 2000 and 2012 dam capacities were compared whilst the trap efficiency of the reservoir was determined using a set of empirical models that relates trap efficiency to the capacity-watershed area ratio and capacity-inflow ratio. The results show that Mutangi reservoir has a trap efficiency of 95% - 98% (av = 96.4%) and has lost 37% of its capacity due to sedimentation in 12 years (2000 and 2012). Rates of sedimentation were 8539 t·yr-1, 9110?t·yr-1 and 8265 t·yr-1 for the hydrographic survey, grab sampling and water depth-capacity method respectively, and the little difference in these figures demonstrates that any method can be used to determine sedimentation rates. The area specific sediment yield (ASY) ranged from 14 - 15.5 t·ha-1·yr-1 (av = 14.956 t·ha-1·yr-1). At the current rate of sedimentation the projected dead level of the reservoir will be lost to sedimentation in 8 years while the useful life of the reservoir is estimated to be 30 years. Capacity loss due to sedimentation is further complicating the already strained water scarcity situation in semi-arid areas and management decisions should be made based on the current sedimentation rates estimated by different methods. These results imply that management practices that reduce erosion, hence sedimentation in these small reservoirs should be practiced in order to prolong their lifespan.
文摘【目的】三峡库区消落带受周期性的水位涨落及冬季长时间深水淹没影响,碳汇能力遭受严重破坏。如何恢复并充分发挥消落带生态系统的碳汇潜力,成为三峡库区生态治理的关键议题。【方法】针对复杂水位变化挑战,提出以林塘模式修复消落带生态系统并提升碳汇能力的技术框架,选取位于三峡库区腹心的大浪坝消落带开展实证研究。运用CASA模型测算修复前后大浪坝消落带的净初级生产力(net primary productivity,NPP),基于植被生物量数据计算修复后大浪坝消落带与未修复对照组内不同高程带的碳汇能力,评估林塘碳汇系统的可持续效益。【结果】修复后大浪坝消落带的碳汇能力随时间推移明显提升,NPP由2012年的154.4 g C·m^(2)·a^(-1)增长至2016年的182.5 g C·m^(2)·a^(-1);各高程带的碳汇能力均显著高于对照组,并呈现出随海拔降低而减弱的趋势,170~175 m高程带碳汇能力达到1.827 kg C/m^(2),160~165 m高程带碳汇能力仅为0.830 kg C/m^(2)。林塘系统增强了生态系统的适应性和复原力,形成了适应水位变化的立体固碳模式并有效提升了碳汇效率。【结论】林塘碳汇系统是应对三峡库区复杂水位变化和长时间深水淹没挑战的适应性探索,显示出景观优化、生物多样性、经济效益与碳汇协同耦合的关键特征。研究成果能够为中国大型工程型水库消落带的治理及碳增汇提供科学依据与可复制推广的创新技术模式。
基金National Natural Science Foundation of China, No.41071067 Program of the Key Discipline Construction of the Physical Geography in Hunan Province
文摘Based on the field-survey prototype hydrology data in typical years, the effect during the running periods of different dispatch modes of the Three Gorges Reservoir on the water regimes in Dongting Lake area is comparatively analyzed. The results are shown as follows. (1) The influence periods are from 25 May to 10 June, from 1 July to 31 August, from 15 September to 31 October and from December to the next April, among which the influence of the water-supplement dispatch in the dry season is not very sensitive. (2) During the period under the pre-discharge dispatch, the runoff volume slightly increases as well as both the average water level and the highest water level rise in the usual year. While in the wet and dry years, the average increase in the runoff volume is 40.25×1 08 m3 and the average rises of the average water level and the highest water level are both 1.06 m. (3) As for the flood-storage dispatch, the flood volume increases slightly, in the dry and wet years, the flood volume, the average water level and the highest water level averagely reduce by 444.02×108 m3, 2.64 m and 1.42 m respectively. (4) Under the water-storage dispatch, the runoff volume slightly in- creases and the water level heightens in a sort in the usual year. And in the dry and wet years the average decreases in the runoff volume, the average water leve/and the highest water levels are respectively 185.27×108 m3, 3.13 m and 2.14 m. (5) During the period under the water-supplement dispatch, the runoff volume, the average water level and the highest water levels averagely decline by 337.7×108 m3, 1.89 m and 2.39 m respectively in the usual and wet years. However, in the dry year, the runoff volume increases as well as the average and highest water levels slightly go up.