Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotro...Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotropy and discontinuity of the karst water-bearing media in these areas. In this study, we used the Guang'an Longtan Coal mine in Sichuan as an example, and generalized the complex hydrogeological conditions in the reservoir area. A finite element numerical flow model was used to simulate current and future scenarios of roadway gushing at the bottom of the coal mine at pile number 1 + 700 m. The results show that the roadway section corresponding to valleys has a gushing quantity of 4323.8–4551.25 m^3/d before impoundment. Modeled water inflow after impoundment increased to 1.6 times the water inflow before impoundment, which threatens the impoundment as well as the roadway's normal operation. Therefore, roadway processing measures are needed to guarantee the safety of the impoundment and of the mining operation.展开更多
1 Introduction As new exploration domain for oil and gas,reservoirs with low porosity and low permeability have become a hotspot in recent years(Li Daopin,1997).With the improvement of technology,low porosity and low
Shale fractures are an important factor controlling shale gas enrichment and high-productivity zones in the Longmaxi Formation, Jiaoshiba area in eastern Sichuan. Drilling results have, however, shown that the shale f...Shale fractures are an important factor controlling shale gas enrichment and high-productivity zones in the Longmaxi Formation, Jiaoshiba area in eastern Sichuan. Drilling results have, however, shown that the shale fracture density does not have a straightforward correlation with shale gas productivity. Based on logging data, drilling and seismic data, the relationship between shale fracture and shale gas accumulation is investigated by integrating the results of experiments and geophysical methods. The following conclusions have been drawn:(1) Tracer diffusion tests indicate that zones of fracture act as favorable channels for shale gas migration and high-angle fractures promote gas accumulation.(2) Based on the result of azimuthal anisotropy prediction, a fracture system with anisotropy strength values between 1 and 1.15 represents a moderate development of high-angle fractures, which is considered to be favorable for shale gas accumulation and high productivity, while fracture systems with anisotropy strength values larger than 1.15 indicate over-development of shale fracture, which may result in the destruction of the shale reservoir preservation conditions.展开更多
基金supported by the National Natural Science Foundation of China (41272377)
文摘Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotropy and discontinuity of the karst water-bearing media in these areas. In this study, we used the Guang'an Longtan Coal mine in Sichuan as an example, and generalized the complex hydrogeological conditions in the reservoir area. A finite element numerical flow model was used to simulate current and future scenarios of roadway gushing at the bottom of the coal mine at pile number 1 + 700 m. The results show that the roadway section corresponding to valleys has a gushing quantity of 4323.8–4551.25 m^3/d before impoundment. Modeled water inflow after impoundment increased to 1.6 times the water inflow before impoundment, which threatens the impoundment as well as the roadway's normal operation. Therefore, roadway processing measures are needed to guarantee the safety of the impoundment and of the mining operation.
基金funded by Major Projects of National Science and Technology "Large Oil and Gas Fields and CBM development"(Grant No. 2016ZX05027)
文摘1 Introduction As new exploration domain for oil and gas,reservoirs with low porosity and low permeability have become a hotspot in recent years(Li Daopin,1997).With the improvement of technology,low porosity and low
基金supported by the National Key Basic Research Program of China (973 Program, No. 2014CB239104)National Science and Technology Major Project (No. 2017ZX05049002-005)+1 种基金Sinopec Basic Prospect Project (No. G5800-16-ZS-KJB043)NSFC-Sinopec Joint Key Project (No. U1663207)
文摘Shale fractures are an important factor controlling shale gas enrichment and high-productivity zones in the Longmaxi Formation, Jiaoshiba area in eastern Sichuan. Drilling results have, however, shown that the shale fracture density does not have a straightforward correlation with shale gas productivity. Based on logging data, drilling and seismic data, the relationship between shale fracture and shale gas accumulation is investigated by integrating the results of experiments and geophysical methods. The following conclusions have been drawn:(1) Tracer diffusion tests indicate that zones of fracture act as favorable channels for shale gas migration and high-angle fractures promote gas accumulation.(2) Based on the result of azimuthal anisotropy prediction, a fracture system with anisotropy strength values between 1 and 1.15 represents a moderate development of high-angle fractures, which is considered to be favorable for shale gas accumulation and high productivity, while fracture systems with anisotropy strength values larger than 1.15 indicate over-development of shale fracture, which may result in the destruction of the shale reservoir preservation conditions.