In this paper,a feature interactive bi-temporal change detection network(FIBTNet)is designed to solve the problem of pseudo change in remote sensing image building change detection.The network improves the accuracy of...In this paper,a feature interactive bi-temporal change detection network(FIBTNet)is designed to solve the problem of pseudo change in remote sensing image building change detection.The network improves the accuracy of change detection through bi-temporal feature interaction.FIBTNet designs a bi-temporal feature exchange architecture(EXA)and a bi-temporal difference extraction architecture(DFA).EXA improves the feature exchange ability of the model encoding process through multiple space,channel or hybrid feature exchange methods,while DFA uses the change residual(CR)module to improve the ability of the model decoding process to extract different features at multiple scales.Additionally,at the junction of encoder and decoder,channel exchange is combined with the CR module to achieve an adaptive channel exchange,which further improves the decision-making performance of model feature fusion.Experimental results on the LEVIR-CD and S2Looking datasets demonstrate that iCDNet achieves superior F1 scores,Intersection over Union(IoU),and Recall compared to mainstream building change detectionmodels,confirming its effectiveness and superiority in the field of remote sensing image change detection.展开更多
A novel multicast communication model using a RingNet hierarchy is proposed. The RingNet hierarchy consists of 4 tiers: border router tier, access gateway tier, access proxy tier and mobile host tier. Within the hiera...A novel multicast communication model using a RingNet hierarchy is proposed. The RingNet hierarchy consists of 4 tiers: border router tier, access gateway tier, access proxy tier and mobile host tier. Within the hierarchy, the upper 2 tiers are dynamically organized into logical rings with network entities. A novel hierarchical secure access control scheme on key management is proposed based on the RingNet model. Network entities within the multicast hierarchy belong to different privileged local groups. Network entities of the higher-privileged local groups have the right to derive the keys held by network entities of the lower-privileged local groups, and the reverse operation is not allowed. With the key management approach, any insertion and changing of local group key will not affect other local groups. The analytical result shows that the scheme has higher security than Lin’s.展开更多
基金supported in part by the Fund of National Sensor Network Engineering Technology Research Center(No.NSNC202103)the Natural Science Research Project in Colleges and Universities of Anhui Province(No.2022AH040155)the Undergraduate Teaching Quality and Teaching Reform Engineering Project of Chuzhou University(No.2022ldtd03).
文摘In this paper,a feature interactive bi-temporal change detection network(FIBTNet)is designed to solve the problem of pseudo change in remote sensing image building change detection.The network improves the accuracy of change detection through bi-temporal feature interaction.FIBTNet designs a bi-temporal feature exchange architecture(EXA)and a bi-temporal difference extraction architecture(DFA).EXA improves the feature exchange ability of the model encoding process through multiple space,channel or hybrid feature exchange methods,while DFA uses the change residual(CR)module to improve the ability of the model decoding process to extract different features at multiple scales.Additionally,at the junction of encoder and decoder,channel exchange is combined with the CR module to achieve an adaptive channel exchange,which further improves the decision-making performance of model feature fusion.Experimental results on the LEVIR-CD and S2Looking datasets demonstrate that iCDNet achieves superior F1 scores,Intersection over Union(IoU),and Recall compared to mainstream building change detectionmodels,confirming its effectiveness and superiority in the field of remote sensing image change detection.
文摘A novel multicast communication model using a RingNet hierarchy is proposed. The RingNet hierarchy consists of 4 tiers: border router tier, access gateway tier, access proxy tier and mobile host tier. Within the hierarchy, the upper 2 tiers are dynamically organized into logical rings with network entities. A novel hierarchical secure access control scheme on key management is proposed based on the RingNet model. Network entities within the multicast hierarchy belong to different privileged local groups. Network entities of the higher-privileged local groups have the right to derive the keys held by network entities of the lower-privileged local groups, and the reverse operation is not allowed. With the key management approach, any insertion and changing of local group key will not affect other local groups. The analytical result shows that the scheme has higher security than Lin’s.