Preservation of low-frequency residual hearing is very important for combined electro-acoustic stimulation after cochlear implantation.However,in clinical practice,loss of low-frequency residual hearing often occurs a...Preservation of low-frequency residual hearing is very important for combined electro-acoustic stimulation after cochlear implantation.However,in clinical practice,loss of low-frequency residual hearing often occurs after cochlear implantation and its mechanisms remain unclear.Factors affecting lowfrequency residual hearing after cochlear implantation are one of the hot spots in current research.Inflammation induced by injury associated with cochlear implantation is deemed to be significant,as it may give rise to low-frequency residual hearing loss by interfering with the blood labyrinth barrier and neural synapses.Pathological changes along the pathway for low-frequency auditory signals transmission may include latent factors such as damage to neuroepithelial structures,synapses,stria vascularis and other ultrastructures.In this review,current research on mechanisms of low-frequency residual hearing loss after cochlear implantation and possible roles of inflammatory responses are summarized.展开更多
Cochlear implantation(CI)is currently recognized as the most effective treatment for severe to profound sensorineural deafness and is considered one of the most successful neural prostheses.Since its inception in 1961...Cochlear implantation(CI)is currently recognized as the most effective treatment for severe to profound sensorineural deafness and is considered one of the most successful neural prostheses.Since its inception in 1961,cochlear implantation has expanded its range of applications to encompass younger newborns,older people,and individuals with unilateral hearing loss.In addition,it has improved its surgical methods to minimize the occurrence of complications.Furthermore,notable advancements have been made in the design of electrodes,techniques for speech processing,and software for programming.Nevertheless,inflammation,fibrosis,and even ossification are observed in the cochlea of nearly all cochlear implant(CI)patients.These tissue responses might have a negative impact on the performance of the implants,residual hearing,and the results of post-operative CI rehabilitation.Animal models are significant translational tools that offer essential preclinical data for possible therapeutics.Thus,this study concentrates on the existing animal models used for cochlear implantation,highlights the advancements made in research,and offers insights into potential future research areas.展开更多
文摘Preservation of low-frequency residual hearing is very important for combined electro-acoustic stimulation after cochlear implantation.However,in clinical practice,loss of low-frequency residual hearing often occurs after cochlear implantation and its mechanisms remain unclear.Factors affecting lowfrequency residual hearing after cochlear implantation are one of the hot spots in current research.Inflammation induced by injury associated with cochlear implantation is deemed to be significant,as it may give rise to low-frequency residual hearing loss by interfering with the blood labyrinth barrier and neural synapses.Pathological changes along the pathway for low-frequency auditory signals transmission may include latent factors such as damage to neuroepithelial structures,synapses,stria vascularis and other ultrastructures.In this review,current research on mechanisms of low-frequency residual hearing loss after cochlear implantation and possible roles of inflammatory responses are summarized.
基金supported by the following:(1)National Natural Science Foundation of China(NSFC#82000976)to Jianan Li(2)National Key Research and Development Program of China(2022YFC2402700)to Wei Chen.
文摘Cochlear implantation(CI)is currently recognized as the most effective treatment for severe to profound sensorineural deafness and is considered one of the most successful neural prostheses.Since its inception in 1961,cochlear implantation has expanded its range of applications to encompass younger newborns,older people,and individuals with unilateral hearing loss.In addition,it has improved its surgical methods to minimize the occurrence of complications.Furthermore,notable advancements have been made in the design of electrodes,techniques for speech processing,and software for programming.Nevertheless,inflammation,fibrosis,and even ossification are observed in the cochlea of nearly all cochlear implant(CI)patients.These tissue responses might have a negative impact on the performance of the implants,residual hearing,and the results of post-operative CI rehabilitation.Animal models are significant translational tools that offer essential preclinical data for possible therapeutics.Thus,this study concentrates on the existing animal models used for cochlear implantation,highlights the advancements made in research,and offers insights into potential future research areas.