The magnetic properties of commercial polycrystalline Nd2Fe14B (N50M,N45H,N40SH,N35EH) and Sm2Co17(XG30/20,XG26/25,XG22/20) magnets at cryogenic temperatures were tested by using a comprehensive physical propertie...The magnetic properties of commercial polycrystalline Nd2Fe14B (N50M,N45H,N40SH,N35EH) and Sm2Co17(XG30/20,XG26/25,XG22/20) magnets at cryogenic temperatures were tested by using a comprehensive physical properties measurement system (PPMS). The results show that the spin tilt temperature Tst of Nd2Fe14B magnets is closely related to intrinsic coercivity Hci , N50M and N45H with smaller Hci show a residual magnetization jump at 235K and 225K, respectively. For Sm2Co17 magnets, in 50-300 K, with temperature decreasing, residual magnetization Mrc shows a nearly linear increase, while in 10-50 K, Mrc has little change. The research results provide a reference for cryogenic undulators and other high-precision cryogenic devices.展开更多
Lead, zinc, and iron were recovered from jarosite residues using direct reduction followed by magnetic separation. The influence of the coal dosage, reduction temperature, and reduction time on the volatilization rate...Lead, zinc, and iron were recovered from jarosite residues using direct reduction followed by magnetic separation. The influence of the coal dosage, reduction temperature, and reduction time on the volatilization rates of lead and zinc and the metallization rate of iron were investigated. The results show that the volatilization rates of lead and zinc were 96.97% and 99.89%, respectively, and the iron metallization rate was 91.97% under the optimal reduction roasting conditions of a coal dosage of 25.0 wt% and reduction roasting at 1250°C for 60 min. The magnetic concentrate with an iron content of 90.59 wt% and an iron recovery rate of 50.87% was obtained under the optimum conditions in which 96.56% of the reduction product particles were smaller than 37 μm and the magnetic field strength was 24 k A/m. Therefore, the results of this study demonstrate that recovering valuable metals such as lead, zinc, and iron from jarosite residues is feasible using the developed approach.展开更多
In order to explore the quantitative method of metal magnetic memory testing(MMMT) and clarify the relationship between Hp(y), the normal component of spontaneous stray field, and applied stress or residual stress...In order to explore the quantitative method of metal magnetic memory testing(MMMT) and clarify the relationship between Hp(y), the normal component of spontaneous stray field, and applied stress or residual stress, the static tensile tests of 0.45%C steel sheet specimens are carried out on a servo hydraulic MTS810 machine. Hp(y) values are measured during the test process by an EMS-2003 metal magnetic memory diagnostic apparatus and a non-magnetic electric control displacement instrument. Residual stresses of some points on the surface of a specimen are measured by a Stress Tech X-Stress 3000 X-ray diffraction instrument. The results show that the same variation rules of Hp(y) value versus applied tensile stress are presented under the different conditions of load-on and load-off. However, the same rule does not exist between the Hp(y) value and residual stress. The variation of Hp(y) value reflects the history of applied tensile stress.展开更多
Conventional attractive magnetic force models (proportional to the coil current squared and inversely proportional to the gap squared) cannot simulate the nonlinear responses of magnetic bearings in the presence of el...Conventional attractive magnetic force models (proportional to the coil current squared and inversely proportional to the gap squared) cannot simulate the nonlinear responses of magnetic bearings in the presence of electromagnetic losses,flux leakage or saturation of iron.In this paper,based on results from an experimental set-up designed to study magnetic force,a novel parametric model is presented in the form of a nonlinear polynomial with unknown coefficients.The parameters of the proposed model are identified using the weighted residual method.Validations of the model identified were performed by comparing the results in time and frequency domains.The results show a good correlation between experiments and numerical simulations.展开更多
基金the Natural Science Foundation of Shanghai,China(Grant No.11ZR1445500)the National Natural Science Foundation of China(Grant No.11175238)
文摘The magnetic properties of commercial polycrystalline Nd2Fe14B (N50M,N45H,N40SH,N35EH) and Sm2Co17(XG30/20,XG26/25,XG22/20) magnets at cryogenic temperatures were tested by using a comprehensive physical properties measurement system (PPMS). The results show that the spin tilt temperature Tst of Nd2Fe14B magnets is closely related to intrinsic coercivity Hci , N50M and N45H with smaller Hci show a residual magnetization jump at 235K and 225K, respectively. For Sm2Co17 magnets, in 50-300 K, with temperature decreasing, residual magnetization Mrc shows a nearly linear increase, while in 10-50 K, Mrc has little change. The research results provide a reference for cryogenic undulators and other high-precision cryogenic devices.
文摘Lead, zinc, and iron were recovered from jarosite residues using direct reduction followed by magnetic separation. The influence of the coal dosage, reduction temperature, and reduction time on the volatilization rates of lead and zinc and the metallization rate of iron were investigated. The results show that the volatilization rates of lead and zinc were 96.97% and 99.89%, respectively, and the iron metallization rate was 91.97% under the optimal reduction roasting conditions of a coal dosage of 25.0 wt% and reduction roasting at 1250°C for 60 min. The magnetic concentrate with an iron content of 90.59 wt% and an iron recovery rate of 50.87% was obtained under the optimum conditions in which 96.56% of the reduction product particles were smaller than 37 μm and the magnetic field strength was 24 k A/m. Therefore, the results of this study demonstrate that recovering valuable metals such as lead, zinc, and iron from jarosite residues is feasible using the developed approach.
基金This project is supported by National Natural Science Foundation of China (No.50235030,No.50505052).
文摘In order to explore the quantitative method of metal magnetic memory testing(MMMT) and clarify the relationship between Hp(y), the normal component of spontaneous stray field, and applied stress or residual stress, the static tensile tests of 0.45%C steel sheet specimens are carried out on a servo hydraulic MTS810 machine. Hp(y) values are measured during the test process by an EMS-2003 metal magnetic memory diagnostic apparatus and a non-magnetic electric control displacement instrument. Residual stresses of some points on the surface of a specimen are measured by a Stress Tech X-Stress 3000 X-ray diffraction instrument. The results show that the same variation rules of Hp(y) value versus applied tensile stress are presented under the different conditions of load-on and load-off. However, the same rule does not exist between the Hp(y) value and residual stress. The variation of Hp(y) value reflects the history of applied tensile stress.
文摘Conventional attractive magnetic force models (proportional to the coil current squared and inversely proportional to the gap squared) cannot simulate the nonlinear responses of magnetic bearings in the presence of electromagnetic losses,flux leakage or saturation of iron.In this paper,based on results from an experimental set-up designed to study magnetic force,a novel parametric model is presented in the form of a nonlinear polynomial with unknown coefficients.The parameters of the proposed model are identified using the weighted residual method.Validations of the model identified were performed by comparing the results in time and frequency domains.The results show a good correlation between experiments and numerical simulations.