When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop thr...When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment.展开更多
Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Ba...Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.展开更多
The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents ...The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.展开更多
Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC g...Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.展开更多
This paper introduces the configuration and the operation principles of a high power direct current circuit breaker (DCCB). The commutating current principle of the breaker is described in details with its theory an...This paper introduces the configuration and the operation principles of a high power direct current circuit breaker (DCCB). The commutating current principle of the breaker is described in details with its theory and simulation analysis. The test results presented show that the DCCB meets the requirements for quenching protection. It will be used as the main breaker for quench protection in EAST.展开更多
Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC cur...Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC current limiter and improve the fault current suppression capability, the fault current suppression mechanism of the DC power distribution system is revealed based on the circuit model. Then, based on the mathematical model of the DC breaker, the characteristic parameters of DC breaking are extracted, and then the influence of different characteristic parameters on the breaking characteristics of fault current is studied. Finally, the mathematical model of the collaborative process between DC circuit breaker and DC current limiter is established. The charac-teristic parameters of fault current collaborative suppression are extracted. The coupling effects of different characteristic parameters on the fault current col-laborative suppression are studied. The principle of collaborative configuration of DC circuit breaker and DC current limiter is proposed, and the collaborative suppression ability of DC circuit breaker and DC current limiter to fault current is fully exploited to ensure the safe and reliable operation of the DC power distribution system.展开更多
This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage cir...This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage circuit breakers was analyzed so that measures to improve instantaneous protection reliability can be determined. Furthermore, the theory of the instantaneous characteristics calibration device for low voltage circuit breakers and the method of eliminating the non-periodic component of test current are given in detail. Finally, the test results are presented.展开更多
This paper analyses the synchronization problem of a generator onto power system without satisfying synchronization condition. The main focus of the paper is on the impact of the dc component of the current in the hig...This paper analyses the synchronization problem of a generator onto power system without satisfying synchronization condition. The main focus of the paper is on the impact of the dc component of the current in the high voltage circuit breaker during its close-open operating cycle. Using real time measurements of currents/voltages and angles during the close-opening cycle of high voltage generator circuit breaker and the impact of the dc component of current in context of interrupting large magnitude of current from the circuit breaker. In addition, the paper describes a study case model and the results of simulations performed using the software EMTP-ATP of an actual incident that occurred during the inadvertent synchronization of a large 339 MW, 24 kV generator to the grid.展开更多
The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-sta...The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-stable magnetic actuator, labyrinth pulling insulator, core-type flexible contact and new compact vacuum interrupter (VI). Phases are encapsulated into silicone rubber providing required creepage distance and excellent tracking resistance. These novelties along with extensive modeling of the mechanical and electrical fields followed by design optimization resulted in weight reduction of more than 50% compared with alternatives available in the market. And this is in spite of built in sensors measuring: phase currents, zero-sequence current, phase voltages.展开更多
This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossing...This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossings of the fault current occur. This is an important subject because the ftmdamental property of the CB (circuit breaker) is that it breaks the current when the current is very near zero. The study was conducted using a hardware-in-the-loop test environment constructed using two real time simulators (dSPACE and RTDS) and a commercial protection relay. It is found that the reactive current injection during a voltage dip demanded by the grid codes enhances the operation of the WT protection because the zero crossings of the currents through CB are attained earlier. In addition, the size of the crowbar resistance has a significant influence on the zero crossings.展开更多
直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协...直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协同动作的故障隔离策略。首先,研究了直流系统永久性故障和瞬时性故障情况下FCLD与DCCB的协同作用机理。其次,分析考虑FCLD电流抑制作用下DCCB开断过程的电弧暂态特性。最后,在Matlab/Simulink平台中进行仿真,验证所提协同策略的可行性。结果表明:FCLD可有效抑制DCCB的开断电弧;基于所提故障隔离策略,直流系统可在瞬时故障情况下实现平稳穿越,永久故障情况下实现DCCB的无弧开断。该策略降低了直流系统故障隔离过程中对DCCB的开断要求,提升了直流系统的故障穿越能力。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.51977132)Key Special Science and Technology Project of Liaoning Province (Grant No.2020JH1/10100012)General Program of the Education Department of Liaoning Province (Grant No.LJKZ0126)。
文摘When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment.
基金This research was funded by Sichuan Science and Technology Program(2023YFSY0013).
文摘Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.
基金supported by National Natural Science Foundation of China(No.51977132)the Key Special Science and Technology Project of Liaoning Province(No.2020JH1/10100012)the General Program of the Education Department of Liaoning Province(No.LJKZ0126).
文摘The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.
基金This project is funded by the Dongying Science Development Fund Project(DJ2021013).
文摘Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.
基金supported by the National Meg-Science Project of the Chinese Government
文摘This paper introduces the configuration and the operation principles of a high power direct current circuit breaker (DCCB). The commutating current principle of the breaker is described in details with its theory and simulation analysis. The test results presented show that the DCCB meets the requirements for quenching protection. It will be used as the main breaker for quench protection in EAST.
文摘Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC current limiter and improve the fault current suppression capability, the fault current suppression mechanism of the DC power distribution system is revealed based on the circuit model. Then, based on the mathematical model of the DC breaker, the characteristic parameters of DC breaking are extracted, and then the influence of different characteristic parameters on the breaking characteristics of fault current is studied. Finally, the mathematical model of the collaborative process between DC circuit breaker and DC current limiter is established. The charac-teristic parameters of fault current collaborative suppression are extracted. The coupling effects of different characteristic parameters on the fault current col-laborative suppression are studied. The principle of collaborative configuration of DC circuit breaker and DC current limiter is proposed, and the collaborative suppression ability of DC circuit breaker and DC current limiter to fault current is fully exploited to ensure the safe and reliable operation of the DC power distribution system.
基金Project (No. 043804411) supported by the Tianjin Natural ScienceFoundation, China
文摘This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage circuit breakers was analyzed so that measures to improve instantaneous protection reliability can be determined. Furthermore, the theory of the instantaneous characteristics calibration device for low voltage circuit breakers and the method of eliminating the non-periodic component of test current are given in detail. Finally, the test results are presented.
文摘This paper analyses the synchronization problem of a generator onto power system without satisfying synchronization condition. The main focus of the paper is on the impact of the dc component of the current in the high voltage circuit breaker during its close-open operating cycle. Using real time measurements of currents/voltages and angles during the close-opening cycle of high voltage generator circuit breaker and the impact of the dc component of current in context of interrupting large magnitude of current from the circuit breaker. In addition, the paper describes a study case model and the results of simulations performed using the software EMTP-ATP of an actual incident that occurred during the inadvertent synchronization of a large 339 MW, 24 kV generator to the grid.
文摘The article describes design peculiarities of the novel compact vacuum circuit breaker with rated voltage 40.5 kV. The design incorporates several novel technical solutions: polycarbonate support insulation, mono-stable magnetic actuator, labyrinth pulling insulator, core-type flexible contact and new compact vacuum interrupter (VI). Phases are encapsulated into silicone rubber providing required creepage distance and excellent tracking resistance. These novelties along with extensive modeling of the mechanical and electrical fields followed by design optimization resulted in weight reduction of more than 50% compared with alternatives available in the market. And this is in spite of built in sensors measuring: phase currents, zero-sequence current, phase voltages.
文摘This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossings of the fault current occur. This is an important subject because the ftmdamental property of the CB (circuit breaker) is that it breaks the current when the current is very near zero. The study was conducted using a hardware-in-the-loop test environment constructed using two real time simulators (dSPACE and RTDS) and a commercial protection relay. It is found that the reactive current injection during a voltage dip demanded by the grid codes enhances the operation of the WT protection because the zero crossings of the currents through CB are attained earlier. In addition, the size of the crowbar resistance has a significant influence on the zero crossings.
文摘直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协同动作的故障隔离策略。首先,研究了直流系统永久性故障和瞬时性故障情况下FCLD与DCCB的协同作用机理。其次,分析考虑FCLD电流抑制作用下DCCB开断过程的电弧暂态特性。最后,在Matlab/Simulink平台中进行仿真,验证所提协同策略的可行性。结果表明:FCLD可有效抑制DCCB的开断电弧;基于所提故障隔离策略,直流系统可在瞬时故障情况下实现平稳穿越,永久故障情况下实现DCCB的无弧开断。该策略降低了直流系统故障隔离过程中对DCCB的开断要求,提升了直流系统的故障穿越能力。