Resilient motion planning and control,without prior knowledge of disturbances,are crucial to ensure the safe and robust flight of quadrotors.The development of a motion planning and control architecture for quadrotors...Resilient motion planning and control,without prior knowledge of disturbances,are crucial to ensure the safe and robust flight of quadrotors.The development of a motion planning and control architecture for quadrotors,considering both internal and external disturbances(i.e.,motor damages and suspended payloads),is addressed.Firstly,the authors introduce the use of exponential functions to formulate trajectory planning.This choice is driven by its ability to predict thrust responses with minimal computational overhead.Additionally,a reachability analysis is incorporated for error dynamics resulting from multiple disturbances.This analysis sits at the interface between the planner and controller,contributing to the generation of more robust and safe spatial–temporal trajectories.Lastly,the authors employ a cascade controller,with the assistance of internal and external loop observers,to further enhance resilience and compensate the disturbances.The authors’benchmark experiments demonstrate the effectiveness of the proposed strategy in enhancing flight safety,particularly when confronted with motor damages and payload disturbances.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:62303412,62322314China Postdoctoral Science Foundation,Grant/Award Number:2022M722739Natural Science Foundation of Zhejiang Province,Grant/Award Number:2023YZ01。
文摘Resilient motion planning and control,without prior knowledge of disturbances,are crucial to ensure the safe and robust flight of quadrotors.The development of a motion planning and control architecture for quadrotors,considering both internal and external disturbances(i.e.,motor damages and suspended payloads),is addressed.Firstly,the authors introduce the use of exponential functions to formulate trajectory planning.This choice is driven by its ability to predict thrust responses with minimal computational overhead.Additionally,a reachability analysis is incorporated for error dynamics resulting from multiple disturbances.This analysis sits at the interface between the planner and controller,contributing to the generation of more robust and safe spatial–temporal trajectories.Lastly,the authors employ a cascade controller,with the assistance of internal and external loop observers,to further enhance resilience and compensate the disturbances.The authors’benchmark experiments demonstrate the effectiveness of the proposed strategy in enhancing flight safety,particularly when confronted with motor damages and payload disturbances.