High-temperature performance tests of chromium-containing stuffing sand for a steel ladle w ith different ratios w ere performed. A high-temperature simulation test furnace w as used to analyze the influence of the co...High-temperature performance tests of chromium-containing stuffing sand for a steel ladle w ith different ratios w ere performed. A high-temperature simulation test furnace w as used to analyze the influence of the composition ratio of ladle filler sand and sintering time on the high-temperature compression resistance of chromium-containing stuffing sand in the temperature range of 1 500- 1 600 ℃. The results show that the refractoriness of ladle filler sand w as the low est( only 1 610 ℃) w hen the composition ratio of chromite sand and silica sand w as 6∶ 4. M oreover,the high-temperature compression resistance w as high w hen the content of chromite sand w as at 70%; the resistance increased w ith increasing sintering time. When the sintering time w as extended at a temperature of 1 600 ℃,the high-temperature compression resistance of ladle filler sand first increased and then decreased after being overburnt.展开更多
When carbon-bearing pellets of oolitic hematite are treated in a shaft furnace,some problems are typically encountered:the metallization ratio of the metal pellets is low;the carbon-bearing pellets bond with each oth...When carbon-bearing pellets of oolitic hematite are treated in a shaft furnace,some problems are typically encountered:the metallization ratio of the metal pellets is low;the carbon-bearing pellets bond with each other at high temperatures;and the separation of phosphorus from iron is difficult.To solve these problems,experiments were conducted on oolitic hematite reduction in a resistance furnace and semi-industrial test shaft furnace.The results showed that the metallization rate reached 90% or greater under the conditions of a reduction temperature of 1 150℃,an atmosphere of simulated flue gas,and a reduction time between 1.5and 2.0h.The problem of high-temperature bonding among pellets can be solved by increasing the strength of the pellets,coating their surface with a surface transfer agent and maintaining an even temperature inside the shaft furnace.The basicity of the ore blend exerted no obvious effect on the magnetic concentrate and phosphorus content.The phosphorus content in the magnetic concentrate can be further reduced by improving the grinding capacity of the ball mills used in the experiments.On the basis of the experimental results related to oolitic hematite reduction with carbon-bearing pellets in a shaft furnace,the experimental requirements were satisfied with an average 88.27%total Fe content and 0.581% P content in the pellets.展开更多
Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and t...Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and the other is decreasing CRI to suppress coke degradation in furnace.Different methods are adopted to realize effective catalysis(increasing CRI)and passivation(decreasing CRI)of coke.Simulation tests of coke in BF lumpy zone under gradual temperature rising have been done.Effect of CRI on gas composition,ore reduction,burden column permeability and heat reserve zone′s temperature under non-isothermal condition are studied.Then combined with iron making calculations,a novel BF operation suggestion is proposed as coke nut with small size be catalyzed and mixed with ore while skeletal coke with large size be passivated and separately charged into BF.展开更多
文摘High-temperature performance tests of chromium-containing stuffing sand for a steel ladle w ith different ratios w ere performed. A high-temperature simulation test furnace w as used to analyze the influence of the composition ratio of ladle filler sand and sintering time on the high-temperature compression resistance of chromium-containing stuffing sand in the temperature range of 1 500- 1 600 ℃. The results show that the refractoriness of ladle filler sand w as the low est( only 1 610 ℃) w hen the composition ratio of chromite sand and silica sand w as 6∶ 4. M oreover,the high-temperature compression resistance w as high w hen the content of chromite sand w as at 70%; the resistance increased w ith increasing sintering time. When the sintering time w as extended at a temperature of 1 600 ℃,the high-temperature compression resistance of ladle filler sand first increased and then decreased after being overburnt.
基金Item Sponsored by National Science and Technology Support Program for 12th Five-year Plan of China(2013BAE07B03)
文摘When carbon-bearing pellets of oolitic hematite are treated in a shaft furnace,some problems are typically encountered:the metallization ratio of the metal pellets is low;the carbon-bearing pellets bond with each other at high temperatures;and the separation of phosphorus from iron is difficult.To solve these problems,experiments were conducted on oolitic hematite reduction in a resistance furnace and semi-industrial test shaft furnace.The results showed that the metallization rate reached 90% or greater under the conditions of a reduction temperature of 1 150℃,an atmosphere of simulated flue gas,and a reduction time between 1.5and 2.0h.The problem of high-temperature bonding among pellets can be solved by increasing the strength of the pellets,coating their surface with a surface transfer agent and maintaining an even temperature inside the shaft furnace.The basicity of the ore blend exerted no obvious effect on the magnetic concentrate and phosphorus content.The phosphorus content in the magnetic concentrate can be further reduced by improving the grinding capacity of the ball mills used in the experiments.On the basis of the experimental results related to oolitic hematite reduction with carbon-bearing pellets in a shaft furnace,the experimental requirements were satisfied with an average 88.27%total Fe content and 0.581% P content in the pellets.
基金Sponsored by National Natural Science Foundation of China(61271303)Fundamental Research Funds for CentralUniversities of China(FRF-TP-12-029A)
文摘Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and the other is decreasing CRI to suppress coke degradation in furnace.Different methods are adopted to realize effective catalysis(increasing CRI)and passivation(decreasing CRI)of coke.Simulation tests of coke in BF lumpy zone under gradual temperature rising have been done.Effect of CRI on gas composition,ore reduction,burden column permeability and heat reserve zone′s temperature under non-isothermal condition are studied.Then combined with iron making calculations,a novel BF operation suggestion is proposed as coke nut with small size be catalyzed and mixed with ore while skeletal coke with large size be passivated and separately charged into BF.