Fungicides are an indispensable tool in plant disease control.Various modes of action(MOAs)have been identified in different fungicides to suppress plant pathogens.The combined use of fungicides with distinct MOAs has...Fungicides are an indispensable tool in plant disease control.Various modes of action(MOAs)have been identified in different fungicides to suppress plant pathogens.The combined use of fungicides with distinct MOAs has been recommended to prevent the development of pathogen resistance.In studying MOAs,metabolomics has been proven to be a robust and high-throughput method.Because metabolites are unique and distinct depending on the biological activities of an organism,MOAs can be identified and classified by establishing metabolic fingerprinting and metabolic profiles.Similarly,if fungicide resistance is developed in a pathogen,the metabolome will change,which can be identified.In this review,we have discussed the principles and advanced applications of metabolomics in the study of MOAs and resistance mechanisms of fungicides,and the potential of metabolic data in understanding the interaction between fungicides and pathogens.Challenges are also discussed in the application of metabolomics,improvement of the study on the mechanism of fungicides in their functions against pathogens and advancing the development of novel fungicides.展开更多
The morphophysiological and molecular-genetic parameters of T. caries isolates collected from various fields of Southern Urals agrocenoses have been analysed. Isolate 1 of wheat callus had a high growth rate in vitro ...The morphophysiological and molecular-genetic parameters of T. caries isolates collected from various fields of Southern Urals agrocenoses have been analysed. Isolate 1 of wheat callus had a high growth rate in vitro even in the presence of 0.1 mg/l fungicide Baitan. Isolate 2 of wheat callus had a low growth rate whereas 0.1 mg/l Baitan significantly inhibited its growth. Comparison of nucleotide sequences of 18S RNA gene of the two isolates showed high level of homology between them, but a large number of nucleotide substitutions have been found. The most characteristic excision was five nucleotides at position 461 of the isolate 2, compared with the isolate 1. Our results allow to assume that the environmental stress including high pesticide concentration may cause the resistance of T. caries pathogen to fungicides.展开更多
[Objective] This study aimed to investigate the resistance to different fungicides in Phytophthora parasitica var. nicotianae. [Method] Under indoor incubation conditions, the resistance to dimethomorph, metalaxyl-man...[Objective] This study aimed to investigate the resistance to different fungicides in Phytophthora parasitica var. nicotianae. [Method] Under indoor incubation conditions, the resistance to dimethomorph, metalaxyl-mancozeb, propamocarb and ovraclostrobin.dimethomorph in P. parasitica strain isolated from Zhenyuan County in Qiandongnan State was analyzed with colony growth measurement method. [Result] P. parasitica exhibited different levels of sensitivity to four fungicides. To be specific, P. parasitica exhibited the highest resistance to dimethomorph, and ECho reached 1.19 μg/ml. [Conclusion] In Zhenyuan tobacco-growing area, long-term single use of dimethomorph possesses certain resistance risk in prevention and control of black shank disease.展开更多
Aphanomyces root rot(ARR) of field pea(Pisum sativum), caused by Aphanomyces euteiches, can cause severe root damage, wilting, and large yield losses under wet soil conditions. To identify ways to manage this disease,...Aphanomyces root rot(ARR) of field pea(Pisum sativum), caused by Aphanomyces euteiches, can cause severe root damage, wilting, and large yield losses under wet soil conditions. To identify ways to manage this disease, the effect of A. euteiches inoculum density on field pea was studied under greenhouse and field conditions in 2015 and 2016. Increases in inoculum density reduced seedling emergence, root nodulation, and plant vigor, and resulted in increased root rot severity in both field and greenhouse tests. Seed treatments with the fungicides Apron Advance(thiabendazole + fludioxonil + metalaxyl) + Vibrance(difenoconazole + metalaxylM + sedaxane), INTEGO Solo(ethaboxam), BAS 516F(boscalid + pyraclostrobin), BAS 720F(metalaxyl + pyraclostrobin + fluxapyroxad), and BAS 516F + BAS 720F(3:1) were evaluated for their efficacy against ARR. All seed treatments except Apron Advance + Vibrance reduced root rot severity under controlled conditions. BAS 516F, BAS 720F and INTEGO Solo improved plant vigor and all treatments reduced seedling blight to varying degrees under greenhouse conditions, but not in the field. A collection of 22 pea genotypes was evaluated for resistance to root rot in field plot experiments. Line 00–2067 showed the least severe root rot symptoms,whereas ‘Spring D' showed the lowest reduction in yield. The results suggest that there may be an opportunity to combine partial host resistance and fungicidal seed treatments to adequately manage ARR of field pea.展开更多
[Objective] The paper was to clarify the sensitivity and resistance of Pseudoperonospora cubensis to cymoxanil.[Method] A total of 69 strains were collected from 13 major cucumber producing areas in eight provinces an...[Objective] The paper was to clarify the sensitivity and resistance of Pseudoperonospora cubensis to cymoxanil.[Method] A total of 69 strains were collected from 13 major cucumber producing areas in eight provinces and cities of Guangdong, Hubei, Jiangsu, Shandong, Beijing, Liaoning, Jilin and Heilongjiang from 2012 to 2016, and their sensitivity and resistance to cymoxanil was determined using leaf disc floating method.[Result] The EC50 of cymoxanil to P. cubensis were 0.006 8-0.134 1 μg/mL and the average EC50 was 0.062 4 μg/mL. The sensitivity of P. cubensis to cymoxanil presented a single-peak curve, which was approximately normal distribution, and no strains with decreased sensitivity were found. The average EC50 (0.062 4 μg/mL) could be used as the sensitivity baseline of P. cubensis to cymoxanil. Among the 69 strains, 16 were low-resistance strains, accounting for 23.19% of the total strains;53 were sensitive strains, accounting for 76.81%, which were dominant populations;and no medium-resistance and high resistance strains were found. The resistance of P. cubensis to cymoxanil ranged from 0.11 to 2.15 times, and the average resistant level was 1.00 times.[Conclusion] Cymoxanil showed strong inhibitory effect against P. cubensis.展开更多
This report reviews the characteristics of JS399-19, a novel cyanoacrylate fungicide. JS399-19 strongly inhibits the mycelial growth of the fungal plant pathogens of the genus Fusarium and exhibits great potential in ...This report reviews the characteristics of JS399-19, a novel cyanoacrylate fungicide. JS399-19 strongly inhibits the mycelial growth of the fungal plant pathogens of the genus Fusarium and exhibits great potential in controlling Fusarium head blight (FHB) on wheat and other cereals. The mode of action of JS399-19 is evidently different from that of benzimidazole (for example, carbendazim) and other sort of fungicides, making it a possible replacement for carbendazim in China to manage carbendazim-resistant subpopulations of Fusarium graminearum and F. asiaticum. JS399-t9 has excellent protective and curative activity against these pathogens. Incorrect use of this fungicide, however, is likely to select for resistance. Among JS399-19-resistant mutants of F. asiaticum induced in the laboratory, the resistant level of mutants was high and the phenotype of resistance against JS399-19 was conferred by a major gene by genetic analysis. The fitness of laboratory-induced JS399-19-resistant mutants of F. asiaticum was nearly equal to that of their parents. JS399-19 lacks cross resistance with other sort fungicides. To control FHB with JS399-19 and to delay the development of the fungicide-resistance, farmers should use tank mixtures containing JS399-19 and carbendazim, metconazole, tebuconazole, or prothioconazole.展开更多
A study was conducted on reducing the yield loss of wheat due to leaf rust caused by Puccinia triticina with foliar application of fungicides during the 2014-2015 and 2015-2016 growing seasons at the Wheat Research In...A study was conducted on reducing the yield loss of wheat due to leaf rust caused by Puccinia triticina with foliar application of fungicides during the 2014-2015 and 2015-2016 growing seasons at the Wheat Research Institute in Faisalabad, Pakistan. Three fungicides: Folicur (tebuconazole) at 300 mL/ha, Nativo (tebuconazole + trifloxystrobin) at 300 g/ha and Tilt (propiconazole) at 500 mL/ha were applied single or two times to Morocco and Sehar-06 wheat varieties used in the trial. The trial plots were first sprayed at the Zadok's scale (ZS) 3 stage and second sprayed between ZS 4.3 and 5.4 stages. The greenness of the trial crop was measured using GreenSeeker. Foliar application of fungicides significantly reduced the loss of grain yield and 1,000-grain weight (TGW) of wheat due to leaf rust in comparison to the control without fungicides application. Of the three fungicides, two times spray of Nativo reduced the grain yield loss of leaf rust susceptible mega wheat variety Sehar-06 by 45%-56% and the loss of TGW by 42%, also giving the highest marginal return in the trial. Single application of Nativo was equally effective as two times spray of Folicur in reducing the loss of wheat grain yield. Two times spray of Folicur was found to be the second choice of fungicide for reducing the yield loss of wheat. The research identified suitable fungicides for reducing the yield loss of wheat due to leaf rust and also generated important scientific knowledge required to manage a sudden outbreak of leaf rust to ensure food security.展开更多
Azoxystrobin acts as an inhibitor of electron transport by binding to the Qo center of cytochrome b (cyt b). Resistance to azoxystrobin was usually caused by the point mutation of cyt b gene or by the induction of a...Azoxystrobin acts as an inhibitor of electron transport by binding to the Qo center of cytochrome b (cyt b). Resistance to azoxystrobin was usually caused by the point mutation of cyt b gene or by the induction of alternative respiration. Oxygen consumption test for mycelia of Colletotrichum capsici showed that azoxystrobin inhibited mycelial respiration within 12 h; however, as time went on, the respiration of the mycelia recovered when the mycelia were treated with azoxystrobin and salicylhydroxamic acid (SHAM, a known inhibitor of alternative respiration), and the oxygen consumption of the mycelia could not be inhibited. Meanwhile, cytochrome b (cyt b) gene expression increased with the recovery of mycelial respiration. The increased cyt b gene expression might play a role in the development of resistance to azoxystrobin in C. capsici.展开更多
[ Objective] The paper was to understand the resistance of Fusarium graminearum to carbendazim and prochloraz in the main wheat producing areas in Hubei Province. [ Method] Totally 350 F. graminearum strains isolated ...[ Objective] The paper was to understand the resistance of Fusarium graminearum to carbendazim and prochloraz in the main wheat producing areas in Hubei Province. [ Method] Totally 350 F. graminearum strains isolated in 2014 were determined to clear their sensitivity to carbendazim and prochloraz. [ Result] ALl isolates were sensitive to carbendazim and procidoraz in Hubei Province, and carbendazim was still valuable in controlling Fusarium head blight. The control effect of prochloraz was better than that of carbendazim, and the combination of prochloraz and carbendazim at the proportion of 1:7 received the best control effect. [ Conclusion ] Combination of chemical agents will occupy a more and more important position in future prevention and control against Fusarium head blight.展开更多
There is a method for investigating the transformation of resistance gene of carbendazim into Trichoderma harzianum. In order to introduce the resistance to benzimidazole fungicide into bio-control microorganism Trich...There is a method for investigating the transformation of resistance gene of carbendazim into Trichoderma harzianum. In order to introduce the resistance to benzimidazole fungicide into bio-control microorganism Trichoderma harzianum was transformed with the resistance gene. In this study, we investigate resistance level and calculate EC 50 (effective concentration of carbendazim that can survive 50% of Trichoderma harzianum in that concentration) and stability of the resistance for the transformant isolate of Trichoderma harzianum. Results show the transformants can growth on the medium containing more than 1 000 μg/ml carbendazim and the resistance is stabled after 10 times transfer on non-selective medium and have EC 50 average about, 1 200 μg/ml.展开更多
After comparison of Trichoderma population density and test of colonization ability in rhizospheres were conducted. Auxotrophic mutants of T. harzianum tolerant to carbendazim and UV-light were obtained by UV-light mu...After comparison of Trichoderma population density and test of colonization ability in rhizospheres were conducted. Auxotrophic mutants of T. harzianum tolerant to carbendazim and UV-light were obtained by UV-light mutagenesis and carbendazim stress on PDA medium and a basis medium with hot pepper root exudation by adding the fungicide. The results showed: all four different isolates of Trichoderma had certain colonization ability in rhizosphere with the characteristic of growing as roots and distributing many more around root tips. The ability, however, was different for the 4 isolates, showing the wild isolates colonized weakly in rhizosphere. Around 5% spores alive and mutants could be obtained after the isolates were irradiated under a 20W UV-light at 25 cm distance for 5 min. The mutants tolerant to carbendazim were screened out by adding the fungicide into PDA medium, which increased resistance to the fungicide 100 times higher than their original isolates and showed auxotrophic. Three mutants,G7n,G20n and G5n, grew very well on PDA and a basic medium with hot pepper root exudation. Therefore, these mutants could be used as the isolates with good colonization ability for further research.展开更多
近年来,受秸秆粗放还田、气候变化等因素影响,由禾谷镰孢复合种(Fusarium graminearum species complex)引起的小麦赤霉病在我国频繁暴发流行,成为长江中下游和黄淮海等小麦主产区的主要病害,严重影响小麦稳产丰收。病菌产生的脱氧雪腐...近年来,受秸秆粗放还田、气候变化等因素影响,由禾谷镰孢复合种(Fusarium graminearum species complex)引起的小麦赤霉病在我国频繁暴发流行,成为长江中下游和黄淮海等小麦主产区的主要病害,严重影响小麦稳产丰收。病菌产生的脱氧雪腐镰刀菌烯醇和玉米赤霉烯酮等真菌毒素也严重威胁小麦质量安全。当前,由于缺乏高抗小麦品种,化学防治仍然是赤霉病防控的重要措施,但随着单一作用方式药剂的长期使用,病菌抗药性问题也逐渐加重。本文综述了禾谷镰孢复合种对苯并咪唑类杀菌剂、甾醇脱甲基抑制剂、肌球蛋白抑制剂、琥珀酸脱氢酶抑制剂等几类常用药剂的抗性现状和抗性机制。在此基础上,探讨禾谷镰孢复合种的抗药性治理对策。展开更多
基金funded by the National Key R&D Program of China(grant no.2022YFD1400900).
文摘Fungicides are an indispensable tool in plant disease control.Various modes of action(MOAs)have been identified in different fungicides to suppress plant pathogens.The combined use of fungicides with distinct MOAs has been recommended to prevent the development of pathogen resistance.In studying MOAs,metabolomics has been proven to be a robust and high-throughput method.Because metabolites are unique and distinct depending on the biological activities of an organism,MOAs can be identified and classified by establishing metabolic fingerprinting and metabolic profiles.Similarly,if fungicide resistance is developed in a pathogen,the metabolome will change,which can be identified.In this review,we have discussed the principles and advanced applications of metabolomics in the study of MOAs and resistance mechanisms of fungicides,and the potential of metabolic data in understanding the interaction between fungicides and pathogens.Challenges are also discussed in the application of metabolomics,improvement of the study on the mechanism of fungicides in their functions against pathogens and advancing the development of novel fungicides.
文摘The morphophysiological and molecular-genetic parameters of T. caries isolates collected from various fields of Southern Urals agrocenoses have been analysed. Isolate 1 of wheat callus had a high growth rate in vitro even in the presence of 0.1 mg/l fungicide Baitan. Isolate 2 of wheat callus had a low growth rate whereas 0.1 mg/l Baitan significantly inhibited its growth. Comparison of nucleotide sequences of 18S RNA gene of the two isolates showed high level of homology between them, but a large number of nucleotide substitutions have been found. The most characteristic excision was five nucleotides at position 461 of the isolate 2, compared with the isolate 1. Our results allow to assume that the environmental stress including high pesticide concentration may cause the resistance of T. caries pathogen to fungicides.
文摘[Objective] This study aimed to investigate the resistance to different fungicides in Phytophthora parasitica var. nicotianae. [Method] Under indoor incubation conditions, the resistance to dimethomorph, metalaxyl-mancozeb, propamocarb and ovraclostrobin.dimethomorph in P. parasitica strain isolated from Zhenyuan County in Qiandongnan State was analyzed with colony growth measurement method. [Result] P. parasitica exhibited different levels of sensitivity to four fungicides. To be specific, P. parasitica exhibited the highest resistance to dimethomorph, and ECho reached 1.19 μg/ml. [Conclusion] In Zhenyuan tobacco-growing area, long-term single use of dimethomorph possesses certain resistance risk in prevention and control of black shank disease.
基金Funding support from Agriculture and Agri-Food Canada, the Saskatchewan Pulse Growersthe Manitoba Pulse and Soybean Growers through the Growing Forward 2 Program
文摘Aphanomyces root rot(ARR) of field pea(Pisum sativum), caused by Aphanomyces euteiches, can cause severe root damage, wilting, and large yield losses under wet soil conditions. To identify ways to manage this disease, the effect of A. euteiches inoculum density on field pea was studied under greenhouse and field conditions in 2015 and 2016. Increases in inoculum density reduced seedling emergence, root nodulation, and plant vigor, and resulted in increased root rot severity in both field and greenhouse tests. Seed treatments with the fungicides Apron Advance(thiabendazole + fludioxonil + metalaxyl) + Vibrance(difenoconazole + metalaxylM + sedaxane), INTEGO Solo(ethaboxam), BAS 516F(boscalid + pyraclostrobin), BAS 720F(metalaxyl + pyraclostrobin + fluxapyroxad), and BAS 516F + BAS 720F(3:1) were evaluated for their efficacy against ARR. All seed treatments except Apron Advance + Vibrance reduced root rot severity under controlled conditions. BAS 516F, BAS 720F and INTEGO Solo improved plant vigor and all treatments reduced seedling blight to varying degrees under greenhouse conditions, but not in the field. A collection of 22 pea genotypes was evaluated for resistance to root rot in field plot experiments. Line 00–2067 showed the least severe root rot symptoms,whereas ‘Spring D' showed the lowest reduction in yield. The results suggest that there may be an opportunity to combine partial host resistance and fungicidal seed treatments to adequately manage ARR of field pea.
基金Supported by Northeast Agricultural University Student SIPT ProjectNational Natural Science Foundation of Heilongjiang Province(ZD2016003)
文摘[Objective] The paper was to clarify the sensitivity and resistance of Pseudoperonospora cubensis to cymoxanil.[Method] A total of 69 strains were collected from 13 major cucumber producing areas in eight provinces and cities of Guangdong, Hubei, Jiangsu, Shandong, Beijing, Liaoning, Jilin and Heilongjiang from 2012 to 2016, and their sensitivity and resistance to cymoxanil was determined using leaf disc floating method.[Result] The EC50 of cymoxanil to P. cubensis were 0.006 8-0.134 1 μg/mL and the average EC50 was 0.062 4 μg/mL. The sensitivity of P. cubensis to cymoxanil presented a single-peak curve, which was approximately normal distribution, and no strains with decreased sensitivity were found. The average EC50 (0.062 4 μg/mL) could be used as the sensitivity baseline of P. cubensis to cymoxanil. Among the 69 strains, 16 were low-resistance strains, accounting for 23.19% of the total strains;53 were sensitive strains, accounting for 76.81%, which were dominant populations;and no medium-resistance and high resistance strains were found. The resistance of P. cubensis to cymoxanil ranged from 0.11 to 2.15 times, and the average resistant level was 1.00 times.[Conclusion] Cymoxanil showed strong inhibitory effect against P. cubensis.
基金sponsored by the National Natural Science Foundation of China (30971891)the Natural Science Foundation of Jiangsu Province, China(BK2008337)the Anhui Provincial Natural Sci-ence Foundation,China (10040606Q26)
文摘This report reviews the characteristics of JS399-19, a novel cyanoacrylate fungicide. JS399-19 strongly inhibits the mycelial growth of the fungal plant pathogens of the genus Fusarium and exhibits great potential in controlling Fusarium head blight (FHB) on wheat and other cereals. The mode of action of JS399-19 is evidently different from that of benzimidazole (for example, carbendazim) and other sort of fungicides, making it a possible replacement for carbendazim in China to manage carbendazim-resistant subpopulations of Fusarium graminearum and F. asiaticum. JS399-t9 has excellent protective and curative activity against these pathogens. Incorrect use of this fungicide, however, is likely to select for resistance. Among JS399-19-resistant mutants of F. asiaticum induced in the laboratory, the resistant level of mutants was high and the phenotype of resistance against JS399-19 was conferred by a major gene by genetic analysis. The fitness of laboratory-induced JS399-19-resistant mutants of F. asiaticum was nearly equal to that of their parents. JS399-19 lacks cross resistance with other sort fungicides. To control FHB with JS399-19 and to delay the development of the fungicide-resistance, farmers should use tank mixtures containing JS399-19 and carbendazim, metconazole, tebuconazole, or prothioconazole.
文摘A study was conducted on reducing the yield loss of wheat due to leaf rust caused by Puccinia triticina with foliar application of fungicides during the 2014-2015 and 2015-2016 growing seasons at the Wheat Research Institute in Faisalabad, Pakistan. Three fungicides: Folicur (tebuconazole) at 300 mL/ha, Nativo (tebuconazole + trifloxystrobin) at 300 g/ha and Tilt (propiconazole) at 500 mL/ha were applied single or two times to Morocco and Sehar-06 wheat varieties used in the trial. The trial plots were first sprayed at the Zadok's scale (ZS) 3 stage and second sprayed between ZS 4.3 and 5.4 stages. The greenness of the trial crop was measured using GreenSeeker. Foliar application of fungicides significantly reduced the loss of grain yield and 1,000-grain weight (TGW) of wheat due to leaf rust in comparison to the control without fungicides application. Of the three fungicides, two times spray of Nativo reduced the grain yield loss of leaf rust susceptible mega wheat variety Sehar-06 by 45%-56% and the loss of TGW by 42%, also giving the highest marginal return in the trial. Single application of Nativo was equally effective as two times spray of Folicur in reducing the loss of wheat grain yield. Two times spray of Folicur was found to be the second choice of fungicide for reducing the yield loss of wheat. The research identified suitable fungicides for reducing the yield loss of wheat due to leaf rust and also generated important scientific knowledge required to manage a sudden outbreak of leaf rust to ensure food security.
基金sponsored by the National 973 Program of China (2006CB101907)the National 863 Program of China (2006AA10A211, 2008AA10Z414)the National Natural Science Foundation of China(30671048, 30671384)
文摘Azoxystrobin acts as an inhibitor of electron transport by binding to the Qo center of cytochrome b (cyt b). Resistance to azoxystrobin was usually caused by the point mutation of cyt b gene or by the induction of alternative respiration. Oxygen consumption test for mycelia of Colletotrichum capsici showed that azoxystrobin inhibited mycelial respiration within 12 h; however, as time went on, the respiration of the mycelia recovered when the mycelia were treated with azoxystrobin and salicylhydroxamic acid (SHAM, a known inhibitor of alternative respiration), and the oxygen consumption of the mycelia could not be inhibited. Meanwhile, cytochrome b (cyt b) gene expression increased with the recovery of mycelial respiration. The increased cyt b gene expression might play a role in the development of resistance to azoxystrobin in C. capsici.
基金Supported by Key Technologies R&D Program of Hubei(2015BBA152)Innovative Experiment Project of College Students(20150086)Natural Science Foundation of Hubei Province(2014CFB367)
文摘[ Objective] The paper was to understand the resistance of Fusarium graminearum to carbendazim and prochloraz in the main wheat producing areas in Hubei Province. [ Method] Totally 350 F. graminearum strains isolated in 2014 were determined to clear their sensitivity to carbendazim and prochloraz. [ Result] ALl isolates were sensitive to carbendazim and procidoraz in Hubei Province, and carbendazim was still valuable in controlling Fusarium head blight. The control effect of prochloraz was better than that of carbendazim, and the combination of prochloraz and carbendazim at the proportion of 1:7 received the best control effect. [ Conclusion ] Combination of chemical agents will occupy a more and more important position in future prevention and control against Fusarium head blight.
文摘There is a method for investigating the transformation of resistance gene of carbendazim into Trichoderma harzianum. In order to introduce the resistance to benzimidazole fungicide into bio-control microorganism Trichoderma harzianum was transformed with the resistance gene. In this study, we investigate resistance level and calculate EC 50 (effective concentration of carbendazim that can survive 50% of Trichoderma harzianum in that concentration) and stability of the resistance for the transformant isolate of Trichoderma harzianum. Results show the transformants can growth on the medium containing more than 1 000 μg/ml carbendazim and the resistance is stabled after 10 times transfer on non-selective medium and have EC 50 average about, 1 200 μg/ml.
文摘After comparison of Trichoderma population density and test of colonization ability in rhizospheres were conducted. Auxotrophic mutants of T. harzianum tolerant to carbendazim and UV-light were obtained by UV-light mutagenesis and carbendazim stress on PDA medium and a basis medium with hot pepper root exudation by adding the fungicide. The results showed: all four different isolates of Trichoderma had certain colonization ability in rhizosphere with the characteristic of growing as roots and distributing many more around root tips. The ability, however, was different for the 4 isolates, showing the wild isolates colonized weakly in rhizosphere. Around 5% spores alive and mutants could be obtained after the isolates were irradiated under a 20W UV-light at 25 cm distance for 5 min. The mutants tolerant to carbendazim were screened out by adding the fungicide into PDA medium, which increased resistance to the fungicide 100 times higher than their original isolates and showed auxotrophic. Three mutants,G7n,G20n and G5n, grew very well on PDA and a basic medium with hot pepper root exudation. Therefore, these mutants could be used as the isolates with good colonization ability for further research.
文摘近年来,受秸秆粗放还田、气候变化等因素影响,由禾谷镰孢复合种(Fusarium graminearum species complex)引起的小麦赤霉病在我国频繁暴发流行,成为长江中下游和黄淮海等小麦主产区的主要病害,严重影响小麦稳产丰收。病菌产生的脱氧雪腐镰刀菌烯醇和玉米赤霉烯酮等真菌毒素也严重威胁小麦质量安全。当前,由于缺乏高抗小麦品种,化学防治仍然是赤霉病防控的重要措施,但随着单一作用方式药剂的长期使用,病菌抗药性问题也逐渐加重。本文综述了禾谷镰孢复合种对苯并咪唑类杀菌剂、甾醇脱甲基抑制剂、肌球蛋白抑制剂、琥珀酸脱氢酶抑制剂等几类常用药剂的抗性现状和抗性机制。在此基础上,探讨禾谷镰孢复合种的抗药性治理对策。