With the rapid development of modern agriculture,the prevention and control of crop diseases and insect pests has become an important part to ensure the safety of agricultural production,the quality of agricultural pr...With the rapid development of modern agriculture,the prevention and control of crop diseases and insect pests has become an important part to ensure the safety of agricultural production,the quality of agricultural products and the safety of agricultural ecological environment.Although the effect of traditional chemical prevention and control technology is remarkable,the health risks and environmental problems brought by it should not be ignored.As a green and environmentally friendly means of prevention and control,biological prevention and control technology has gradually become a hot research topic and a trend of agricultural production.This paper is intended to comprehensively evaluate the social costs of biological control technologies for crop diseases and pests,including the health risks reduced,environmental improvements,economic benefits,and barriers to promotion,and put forward corresponding policy recommendations.展开更多
This paper outlines the physiological responses of plants to pathogenic microbial infection and pest feeding stress,as well as the resistance characteristics of plants to diseases and pests,and proposes new directions...This paper outlines the physiological responses of plants to pathogenic microbial infection and pest feeding stress,as well as the resistance characteristics of plants to diseases and pests,and proposes new directions for future research on crop resistance to diseases and pests.The objective of this paper is to provide a reference framework for the breeding of crops with enhanced resistance to diseases and pests,the utilization of natural immunity in crops,and the efficient prevention and control of diseases and pests.This framework is intended to facilitate the healthy and sustainable development of the agricultural industry.展开更多
[Objectives]The paper was to master the species,incidence regularity and control techniques of main diseases and insect pests of Camellia oleifera in Anhui Province.[Methods]The species of main diseases and insect pes...[Objectives]The paper was to master the species,incidence regularity and control techniques of main diseases and insect pests of Camellia oleifera in Anhui Province.[Methods]The species of main diseases and insect pests of C.oleifera in major C.oleifera afforestation bases and seedling bases in Anhui Province were investigated through field survey and literature search.Afterwards,the symptom characteristics,occurrence regularity and harms of diseases and insect pests were analyzed,and scientific and reasonable control techniques were put forward.[Results]The main diseases of C.oleifera in Anhui Province were soft rot disease,blister blight,anthracnose,sooty blotch,etc.,and the main insect pests were Euproctis pseudoconspersa,Biston marginata,Hypomeces squamosus,Curculio chinensts,Chrenoma atritarsis,etc.The control techniques mainly included ecological regulation,physical prevention and control,chemical prevention and control,and biological prevention and control.[Conclusions]The results will promote the high-quality development of C.oleifera industry in Anhui Province,and contribute to the improvement of China s edible vegetable oil supply and national grain and oil security.展开更多
During 1984-1988,2,231 varieties(lines)from International Rice Testing Program(IRTP)were evaluated and screened for resistance to riceblast(Bl),bacterial blight(BB),sheath blight
The United States, Brazil, Argentina, India and China are the major soybean producing countries in the world. Nearly 90% of the world^s soybean production comes from these countries. The occurrence of diseases and i...The United States, Brazil, Argentina, India and China are the major soybean producing countries in the world. Nearly 90% of the world^s soybean production comes from these countries. The occurrence of diseases and insect pests often lead to the reduction of soybean yield, and brings varying degree losses to these countries. This article provides an overview of the impact and measures on soybean main diseases and insect pests in the top five major soybean producing countries over the world. It is concluded that the diseases affecting the soybean yield seriously include Phakopsorapachyrhizi, Heterodera glycines, Septoria glycines, Colletotrichum spp. and Macrophominaphaseolina; and the main insect pests include Anticarsia gemmatalis, Spodoptera litura, Nezara viridula and Frankliniella occidentalis, which will provide information for key prevention and control of soybean main diseases and insect pests in these countries.展开更多
The study was conducted with 75 tomato entries at the farm of Olericulture Division, Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh during the winter season ...The study was conducted with 75 tomato entries at the farm of Olericulture Division, Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh during the winter season of 2020-21 to evaluate insect and disease reaction. Among the various insect and diseases of tomatoes, the late blight, TYLCV, bacterial wilt infection and leaf miner, fruit borer infestation are most common in Bangladesh. The TYLCV infection was observed 0% to 27% infection, while 47 entries showed zero percent infection. The range of bacterial wilt infection was 0% to 10% and zero percent infection was observed in 62 entries. In case of leaf miner infestation and fruit borer infestation, the range was 0% to 43% and 0% to 10%, respectively. Considering tolerance to late blight, TYLCV, bacterial wilt infection and leaf miner, fruit borer infestation, fruit size, fruit shape, plant growth nature, cluster nature of fruit, type of fruit ten entries AVTO 1010, AVTO 1706, AVTO 1713, AVTO 1829, AVTO 1909, AVTO 1911, AVTO 1915, AVTO 1921, AVTO 1954 and SLA 011 were found zero percent late blight, TYLCV, bacterial wilt infection and leaf miner, fruit borer infestation. So, these ten entries can be selected for disease and insect tolerant tomato varieties development as well as developing disease and insect tolerant hybrid tomato varieties.展开更多
[Objectives]The paper was to find the diseases and insect pests in the process of cotton growth quickly,effectively and timely.[Methods]The growth process of cotton was dynamically monitored by UAV aerial photography,...[Objectives]The paper was to find the diseases and insect pests in the process of cotton growth quickly,effectively and timely.[Methods]The growth process of cotton was dynamically monitored by UAV aerial photography,and the aerial data map was converted into geotif image with longitude and latitude and then inputted into the detection system for preprocessing,mainly for image feature extraction and classification.Through deep learning of MATLAB software and BP neural network algorithm,the feature similarity of the images in the established characteristic database of cotton diseases and insect pests was compared.[Results]Through comparative analysis of characteristics of a large number of diseases and insect pests,it was found that deep learning method had high discrimination accuracy and good reliability.[Conclusions]The dynamic detection system using deep learning can well find cotton diseases and insect pests,and achieve early detection and early treatment,so as to effectively improve the yield and quality of cotton.展开更多
In recent years,with the increasing planting area of facility tomato,diseases and insect pests such as tomato grey mold(Botrytis cinerea),early blight(Alternaria solani),late blight(Phytophthora infestans),and whitefl...In recent years,with the increasing planting area of facility tomato,diseases and insect pests such as tomato grey mold(Botrytis cinerea),early blight(Alternaria solani),late blight(Phytophthora infestans),and whitefly(Trialeurodes uaporariorum) occur frequently,causing severe harms and difficulties in prevention and control.In order to ensure the normal production of facility tomato and improve the yield and quality of tomato,the corresponding prevention and control measures are put forward according to the regularity of the occurrence of diseases and insect pests and the characteristics of facility environment,which has certain guiding significance for agricultural production.展开更多
[Objective] Study on the effects of rice-duck mutualism on weeds and insects pests and economic benefits of paddy field. [Method] Comparison of the incidence of weeds, sheath blight and insects pest under rice-duck mu...[Objective] Study on the effects of rice-duck mutualism on weeds and insects pests and economic benefits of paddy field. [Method] Comparison of the incidence of weeds, sheath blight and insects pest under rice-duck mutualism, conventional cultivation and control treatment, the yield and economic benefits were analyzed under the 3 treatments. [Result] Average occurrence of weeds in rice-duck mutualism group decreased by 2.33 and 52.0g ind/m^2 compared with that in conventional cultivation and control treatment ; the control rate of mutualism was up to 75% against rice hopper, but just between 25% -60% against rice leaf roller and Chilo suppressalis. The rates of diseased plant and diseased bell against rice sheath blight were higher and disease indices were lower compared with control group. The yield of mutualism group was identical with conventional cultivation, Which was greatly higher than that of control group. The results suggested an higher economic benefits and lower cost benefit ratio for rice-duck mutualism treatment. [Conclusion] Rice-duck mutualism gives birth to a positive effect to control the diseases, insect pests and weeds, as well as to economic benefits, providing basis on extension of rice-duck mutualism system.展开更多
Blueberry,kiwifruit,Rosa roxburghii,and raspberry are the characteristic fruits planted in Guizhou Province.However,in recent years,harmful factors such as plant diseases and insect pests,pesticides and heavy metal re...Blueberry,kiwifruit,Rosa roxburghii,and raspberry are the characteristic fruits planted in Guizhou Province.However,in recent years,harmful factors such as plant diseases and insect pests,pesticides and heavy metal residues have affected the quality and safety of blueberry,kiwifruit,R.roxburghii,raspberry and other berries.These problems mainly include the frequent occurrence of plant diseases and insect pests,pesticide residues and heavy metal pollution,which not only seriously affect the quality and safety of berries,but also restrict the healthy development of berry industry.Therefore,it is very important to study the detection and monitoring of key hazard factors affecting the quality and safety of blueberry,kiwifruit,R.roxburghii and raspberry,as well as the standardized production technology.Using literature analysis,field investigation,questionnaire survey,comprehensive analysis,SWOT analysis,laboratory testing and other methods,this paper made a comprehensive and in-depth study of the berry industry in Guizhou Province.Through the analysis of the current situation of the berry industry in Guizhou Province,the problems and shortcomings in the planting,management,sales and other aspects of the industry were revealed.In order to solve these problems,a series of practical measures were put forward,including strengthening pest control,optimizing pesticide application technology,and strictly controlling heavy metal pollution,so as to ensure the healthy and stable development of berry industry.The implementation of these measures will help to improve the overall quality level of the berry industry in Guizhou Province.展开更多
Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection ...Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection pressure for resistant populations.Thus,this study aimed to detect insecticide resistance and assess insecticide control failure likelihood of boll weevil populations exposed to malathion,profenophos+cypermethrin,and fipronil insecticides.Results Twelve populations of the boll weevil were collected from commercial cotton fileds of the state of Bahia,northeastern Brazil.These populations were exposed to malathion,profenophos+cypermethrin mixture,and fipronil,at their respective maximum label dose for field applications.Three replicates of 10 adult beetles were exposed to the insecticides and mortality was recorded after 24 h treatment.The control failure likelihood was determined after 48 h.Highest median lethal times(LT_(50))were observed for malathion and the profenophos+cypermethrin mixture.Resistance to at least one insecticide was detected in 11 populations;three populations were resistant to malathion and profenophos+cypermethrin;seven were resistant to all insecticides tested.The resistance levels were low(<10-fold)for the three insecticides.Among 12 populations tested,58%of them exhibited significant risk of control failure for the insecticides malathion and profenophos+cypermethrin.The insecticide fipronil was efficient for the control of the boll weevil in 83%of the populations.Conclusions The results confirm the significant risk of insecticide control failure in the boll weevil populations to the main compounds used in the region.Thus,proper insecticide resistance management plans are necessary for the boll weevil in the region,particularly for malathion and profenophos+cypermethrin insecticides.展开更多
PCR detection,quantitative real-time PCR(q-RTPCR),outdoor insect resistance,and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations(T2,T...PCR detection,quantitative real-time PCR(q-RTPCR),outdoor insect resistance,and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations(T2,T3,and T4)in transgenic maize germplasms(S3002 and 349)containing the bivalent genes(insect resistance gene Cry1Ab13-1 and disease resistance gene NPR1)and their corresponding wild type.Results indicated that the target genes Cry1Ab13-1 and NPR1 were successfully transferred into both germplasms through tested generations;q-PCR confirmed the expression of Cry1Ab13-1 and NPR1 genes in roots,stems,and leaves of tested maize plants.In addition,S3002 and 349 bivalent gene-transformed lines exhibited resistance to large leaf spots and corn borer in the field evaluation compared to the wild type.Our study confirmed that Cry1Ab13-1 and NPR1 bivalent genes enhanced the resistance against maize borer and large leaf spot disease and can stably inherit.These findings could be exploited for improving other cultivated maize varieties.展开更多
Rice is one of the most important staple foods for the world population,but it is attacked by a number of destructive pests.While evidence from greenhouse and laboratory tests has shown that silicon(Si)amendment can...Rice is one of the most important staple foods for the world population,but it is attacked by a number of destructive pests.While evidence from greenhouse and laboratory tests has shown that silicon(Si)amendment can confer enhanced resistance to pests in rice,few studies have directly demonstrated the Si-mediated protection from pests in a field situation.In this study,field plots with silicon amendments at 0,75,150 and 300 kg SiO2 ha-1 in early-and late-season rice were employed to evaluate the effects of silicon amendment on the occurrence of major insect pests and diseases and rice yield.Compared with the control plots without silicon amendment,plant damage by stem borer and leaf folder and population size of planthopper were significantly lower in three to five of the seven monitoring observations in each season in the plots amended with 300 kg SiO2 ha-1.The disease index of rice blast in the early-season rice was lower in the plots amended with Si at 300 kg SiO2 ha-1 than in the control plots,while Si protection from rice blast in the late-season rice and from rice sheath blight in the early-season rice were not apparent.An insignificant increase of rice yield by 16.4%(604 kg ha-1)was observed in the plots amended with 300 kg SiO2 ha-1 over the control plots.Our results indicate that Si amendment at 300kg SiO2 ha-1 can provide substantial protection from some of the rice pests under field conditions.These findings support the recommendation of silicon amendment as a key component of integrated management of rice pests.展开更多
Soybean rust,soybean downy mildew,and soybean thrips,soybean pod borers,and soybean nocturnal moths are the world wide diseases and insect pests in soybean production,which pose a potential threat to soybean productio...Soybean rust,soybean downy mildew,and soybean thrips,soybean pod borers,and soybean nocturnal moths are the world wide diseases and insect pests in soybean production,which pose a potential threat to soybean production in Great Mekong Sub-region( GMS),comprising Cambodia,Lao People's Democratic Republic,Myanmar,Thailand,Vietnam,and Yunnan province,the People's Republic of China. This paper summarized the host range,epidemiology,damage and control methods of these diseases and insect pests in GMS,with the aim to provide information basis for understanding and effective control of soybean diseases and insect pests in GMS.展开更多
In order to effectively deal with the problems of diseases and insect pests in the growth process of strawberry and to improve the quality and yield of strawberry,the main diseases and insect pests in strawberry culti...In order to effectively deal with the problems of diseases and insect pests in the growth process of strawberry and to improve the quality and yield of strawberry,the main diseases and insect pests in strawberry cultivation such as powdery mildew,gray mold,anthracnose,red stele root rot,calcium deficiency,salt or fertilizer damage,aphids,red spiders,thrips,grubs,etc.and their identification methods were analyzed.The comprehensive pollution-free prevention and control techniques of these pests and diseases were explored,in order to provide technical guidance for high quality,efficient and harmless production of strawberry.展开更多
[Objectives]The paper was to understand the species and harm of diseases and insect pests of Baccaurea ramiflora Lour.in Guangxi,and to provide basis for the prevention and control of diseases and insect pests.[Method...[Objectives]The paper was to understand the species and harm of diseases and insect pests of Baccaurea ramiflora Lour.in Guangxi,and to provide basis for the prevention and control of diseases and insect pests.[Methods]From 2018 to 2021,a systematic investigation on diseases and insect pests of B.ramiflora was conducted in Dongxing City,Fangchenggang City,Longzhou County,Pingxiang City,Jingxi City and Napo County in Guangxi.[Results]There were 22 species of diseases and insect pests that harmed B.ramiflora in Guangxi,7 of which were diseases and 15 were insect pests.Leaf blight(Fuasrium spp.)was the main disease at seedling stage,causing severe damage,and anthracnose(Colletotrichum gloeosporioides Penz.)caused moderate damage.Cyclosia papilionaris Drury and Chrysochus chinensis Baly had high frequency of occurrence,wide damage area and severe damage.Cyclosia panthono Stoll and Lcerya aegyptiaca Douglas caused moderate damage,while other insect pests caused light damage.[Conclusions]The study lays a foundation for the scientific prevention and control of B.ramiflora diseases and insect pests,and promotes the sustainable and rapid development of B.ramiflora industry in Guangxi.展开更多
As a natural genetic reservoir, wild rice contains many favorable alleles and mutations conferring high yield and resistance to biotic and abiotic stresses. However, there are few reports describing favorable genes or...As a natural genetic reservoir, wild rice contains many favorable alleles and mutations conferring high yield and resistance to biotic and abiotic stresses. However, there are few reports describing favorable genes or QTL from the AA genome wild rice O. longistaminata, which is characterized by tall and robust habit and long tassels and anthers and shows high potential for use in cultivated rice improvement. We constructed a stable BC_(2)F_(20) backcross inbred line(BIL) population of 152 lines from the cross of 9311 × O.longistaminat. Some BILs showed large panicles, large seeds, and strong resistance to rice false smut, bacterial leaf blight, rice blast spot, and brown planthopper. Genomic resequencing showed that the 152 BILs covered about 99.6% of the O. longistaminata genome. QTL mapping with 2432 bin markers revealed 13QTL associated with seven yield traits and eight with resistance to brown planthopper and to four diseases. Of these QTL, 12 for grain yield and 11 for pest and disease resistance are novel in Oryza species.A large-panicle NIL1880 line containing QTL qPB8.1 showed a nearly 50% increase in spikelet number and27.5% in grain yield compared to the recurrent parent 9311. These findings support the potential value of O. longistaminata for cultivated rice improvement.展开更多
[Objective] The aim was to explore the effects of cultivation and seed reservation methods on quality and disease/insect damages of maca seed in cold highland areas,providing scientific references for cultivation and ...[Objective] The aim was to explore the effects of cultivation and seed reservation methods on quality and disease/insect damages of maca seed in cold highland areas,providing scientific references for cultivation and seed reservation and planning of maca vareity.[Method] Yellow,purple and black maca were selected and cultivated in the region with an elevation of 3 000 m to be experimental materials and cultivation and seed reservation methods were as follows:maca seed reservation in situ,seed reservation in original soils maca grown after selection of maca balls,and seed reservation in the region with an elevation of 2 700 m after selection of maca ball,seed reservation in greenhouses in the region with an elevation of 2 400 m after selection of maca ball,and growing selected balls in greenhouses and transplanting to the farmlands with an elevation of 2 400 m.[Result] The cultivation and seed reservation methods had significant or extremely significant effects on maca phenological phase;maca in different colors were treated by different cultivation and seed reservation methods,showing insignificant effects on disease and insect damages.[Conclusion] It can be concluded that the selected maca balls stored for 15 d as per the method grown in the region with an elevation of 2 700 m will improve seed quality and reduce disease or insect damages.展开更多
The newly-hatched nymphs of the small brown planthopper (SBPH), Laodelphax striatellus, including field and sensitive populations, were subjected to the high-temperature (35°C) treatment. The number of yeast-like...The newly-hatched nymphs of the small brown planthopper (SBPH), Laodelphax striatellus, including field and sensitive populations, were subjected to the high-temperature (35°C) treatment. The number of yeast-like endosymbiotes in SBPH reduced by 23.47%–34.23%, 57.86%–61.51% and 88.96%–90.71% after the high-temperature treatment for 1 d, 2 d, and 3 d, respectively. However, the size of yeast-like endosymbiotes was not obviously affected. Resistance of SBPH to three insecticides (imidacloprid, chlorpyrifos and fipronil) decreased with the increase of treatment time.展开更多
In agricultural production,a single insect-resistant and disease-resistant variety can no longer meet the demand.In this study,the expression vector pCAMBIA-3301-PR1 containing the disease-resistant gene PR1 was const...In agricultural production,a single insect-resistant and disease-resistant variety can no longer meet the demand.In this study,the expression vector pCAMBIA-3301-PR1 containing the disease-resistant gene PR1 was constructed by means of genetic engineering,and the PR1 gene was genetically transformed to contain the PR1 gene through the pollen tube method.In CryAb-8Like transgenic high-generation T7 receptor soybean,a new material that is resistant to insects and diseases is obtained.For T2 transformed plants,routine PCR detection,Southern Blot hybridization,fluorescence quantitative PCR detection,indoor and outdoor pest resistance identification and indoor disease resistance identification were performed.The results showed that there were 9 positive plants in the routine PCR test of T2 generation.In Southern Blot hybridization,both PR1 and CryAb-8Like genes are integrated in soybeans in the form of single copies.Fluorescence quantitative PCR showed that the expression levels of PR1 and CryAb-8Like genes are different in different tissues.The average expression levels of PR1 gene in plant roots,stems,and leaves are 2.88,1.54,and 5.26,respectively.CryAb-8Like genes are found in roots,stems,and leaves.The average expression levels were 1.36,1.39,and 4.25,respectively.The insectivorous rate of the CryAb-8Like gene in outdoor plants with positive insect resistance identification was 3.78%.The disc partition method was used indoors for pest resistance identification,and the bud length of transformed plants increased significantly.The average mortality rate of untransformed plants in indoor disease resistance identification was as high as 56.66%,and the average mortality rate of plants transformed with PR1 gene was 10.00%,and disease resistance was significantly improved.Therefore,a new material with resistance to diseases and insects is obtained.展开更多
文摘With the rapid development of modern agriculture,the prevention and control of crop diseases and insect pests has become an important part to ensure the safety of agricultural production,the quality of agricultural products and the safety of agricultural ecological environment.Although the effect of traditional chemical prevention and control technology is remarkable,the health risks and environmental problems brought by it should not be ignored.As a green and environmentally friendly means of prevention and control,biological prevention and control technology has gradually become a hot research topic and a trend of agricultural production.This paper is intended to comprehensively evaluate the social costs of biological control technologies for crop diseases and pests,including the health risks reduced,environmental improvements,economic benefits,and barriers to promotion,and put forward corresponding policy recommendations.
基金Supported by Science and Technology Innovation Guidance Project of Zhaoqing in 2023(2023040308006)Major Science and Technology Special Project of Yunnan Province(202202AE090036)+1 种基金Open Project of Yunnan State Key Laboratory for Conservation and Utilization of Bio-Resources(gzkf2022004)Innovation Platform Construction Project of Zhaoqing University in 2024(202413004).
文摘This paper outlines the physiological responses of plants to pathogenic microbial infection and pest feeding stress,as well as the resistance characteristics of plants to diseases and pests,and proposes new directions for future research on crop resistance to diseases and pests.The objective of this paper is to provide a reference framework for the breeding of crops with enhanced resistance to diseases and pests,the utilization of natural immunity in crops,and the efficient prevention and control of diseases and pests.This framework is intended to facilitate the healthy and sustainable development of the agricultural industry.
基金Supported by Youth Project of Natural Science Foundation of Anhui Province(2008085QC135)Postdoctoral Workstation Project of West Anhui University(WXBSH2020003)+4 种基金Key Program of Natural Science Research Project for Anhui Universities(KJ2021A0954)Forestry Carbon Sequestration Self-funded Science and Technology Project of Anhui Province(LJH[2022]267)Subject of Lu an Forestry Bureau(0045021093)School-level Quality Engineering Project of West Anhui University(wxxy2021017)Provincial Quality Engineering Project of West Anhui University(2022jyxm1765).
文摘[Objectives]The paper was to master the species,incidence regularity and control techniques of main diseases and insect pests of Camellia oleifera in Anhui Province.[Methods]The species of main diseases and insect pests of C.oleifera in major C.oleifera afforestation bases and seedling bases in Anhui Province were investigated through field survey and literature search.Afterwards,the symptom characteristics,occurrence regularity and harms of diseases and insect pests were analyzed,and scientific and reasonable control techniques were put forward.[Results]The main diseases of C.oleifera in Anhui Province were soft rot disease,blister blight,anthracnose,sooty blotch,etc.,and the main insect pests were Euproctis pseudoconspersa,Biston marginata,Hypomeces squamosus,Curculio chinensts,Chrenoma atritarsis,etc.The control techniques mainly included ecological regulation,physical prevention and control,chemical prevention and control,and biological prevention and control.[Conclusions]The results will promote the high-quality development of C.oleifera industry in Anhui Province,and contribute to the improvement of China s edible vegetable oil supply and national grain and oil security.
文摘During 1984-1988,2,231 varieties(lines)from International Rice Testing Program(IRTP)were evaluated and screened for resistance to riceblast(Bl),bacterial blight(BB),sheath blight
基金Supported by Fund Project of Key Laboratory of Integrated Pest Management on Crops in South China,Ministry of Agriculture,P.R.China(SCIPM2018-08)Natural Science Youth Fund of Yunnan Agricultural University(2016ZR18)Key Discipline Project of Agricultural Entomology and Pest Control in Yunnan Agricultural University(A2001206)
文摘The United States, Brazil, Argentina, India and China are the major soybean producing countries in the world. Nearly 90% of the world^s soybean production comes from these countries. The occurrence of diseases and insect pests often lead to the reduction of soybean yield, and brings varying degree losses to these countries. This article provides an overview of the impact and measures on soybean main diseases and insect pests in the top five major soybean producing countries over the world. It is concluded that the diseases affecting the soybean yield seriously include Phakopsorapachyrhizi, Heterodera glycines, Septoria glycines, Colletotrichum spp. and Macrophominaphaseolina; and the main insect pests include Anticarsia gemmatalis, Spodoptera litura, Nezara viridula and Frankliniella occidentalis, which will provide information for key prevention and control of soybean main diseases and insect pests in these countries.
文摘The study was conducted with 75 tomato entries at the farm of Olericulture Division, Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh during the winter season of 2020-21 to evaluate insect and disease reaction. Among the various insect and diseases of tomatoes, the late blight, TYLCV, bacterial wilt infection and leaf miner, fruit borer infestation are most common in Bangladesh. The TYLCV infection was observed 0% to 27% infection, while 47 entries showed zero percent infection. The range of bacterial wilt infection was 0% to 10% and zero percent infection was observed in 62 entries. In case of leaf miner infestation and fruit borer infestation, the range was 0% to 43% and 0% to 10%, respectively. Considering tolerance to late blight, TYLCV, bacterial wilt infection and leaf miner, fruit borer infestation, fruit size, fruit shape, plant growth nature, cluster nature of fruit, type of fruit ten entries AVTO 1010, AVTO 1706, AVTO 1713, AVTO 1829, AVTO 1909, AVTO 1911, AVTO 1915, AVTO 1921, AVTO 1954 and SLA 011 were found zero percent late blight, TYLCV, bacterial wilt infection and leaf miner, fruit borer infestation. So, these ten entries can be selected for disease and insect tolerant tomato varieties development as well as developing disease and insect tolerant hybrid tomato varieties.
基金Supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(2020D01C003)。
文摘[Objectives]The paper was to find the diseases and insect pests in the process of cotton growth quickly,effectively and timely.[Methods]The growth process of cotton was dynamically monitored by UAV aerial photography,and the aerial data map was converted into geotif image with longitude and latitude and then inputted into the detection system for preprocessing,mainly for image feature extraction and classification.Through deep learning of MATLAB software and BP neural network algorithm,the feature similarity of the images in the established characteristic database of cotton diseases and insect pests was compared.[Results]Through comparative analysis of characteristics of a large number of diseases and insect pests,it was found that deep learning method had high discrimination accuracy and good reliability.[Conclusions]The dynamic detection system using deep learning can well find cotton diseases and insect pests,and achieve early detection and early treatment,so as to effectively improve the yield and quality of cotton.
文摘In recent years,with the increasing planting area of facility tomato,diseases and insect pests such as tomato grey mold(Botrytis cinerea),early blight(Alternaria solani),late blight(Phytophthora infestans),and whitefly(Trialeurodes uaporariorum) occur frequently,causing severe harms and difficulties in prevention and control.In order to ensure the normal production of facility tomato and improve the yield and quality of tomato,the corresponding prevention and control measures are put forward according to the regularity of the occurrence of diseases and insect pests and the characteristics of facility environment,which has certain guiding significance for agricultural production.
基金Supported by Ministry of Science and Technology of China“National Project of Science and Technology for Food Production”(2004ba520a04)~~
文摘[Objective] Study on the effects of rice-duck mutualism on weeds and insects pests and economic benefits of paddy field. [Method] Comparison of the incidence of weeds, sheath blight and insects pest under rice-duck mutualism, conventional cultivation and control treatment, the yield and economic benefits were analyzed under the 3 treatments. [Result] Average occurrence of weeds in rice-duck mutualism group decreased by 2.33 and 52.0g ind/m^2 compared with that in conventional cultivation and control treatment ; the control rate of mutualism was up to 75% against rice hopper, but just between 25% -60% against rice leaf roller and Chilo suppressalis. The rates of diseased plant and diseased bell against rice sheath blight were higher and disease indices were lower compared with control group. The yield of mutualism group was identical with conventional cultivation, Which was greatly higher than that of control group. The results suggested an higher economic benefits and lower cost benefit ratio for rice-duck mutualism treatment. [Conclusion] Rice-duck mutualism gives birth to a positive effect to control the diseases, insect pests and weeds, as well as to economic benefits, providing basis on extension of rice-duck mutualism system.
基金Supported by Project of Science and Technology Development Center of the Ministry of Education of China(2022YFD1601704)Research Program of Huang Yanpei's Vocational Education Thought of China Vocational Education Association(ZJS2024YB181)+1 种基金Project of China Institute of Electronic Labor(Ceal2023269)New Generation Information Technology Innovation Project of High Education Institutions Scientific Research and Development Center of the Ministry of Education of China(2022IT120).
文摘Blueberry,kiwifruit,Rosa roxburghii,and raspberry are the characteristic fruits planted in Guizhou Province.However,in recent years,harmful factors such as plant diseases and insect pests,pesticides and heavy metal residues have affected the quality and safety of blueberry,kiwifruit,R.roxburghii,raspberry and other berries.These problems mainly include the frequent occurrence of plant diseases and insect pests,pesticide residues and heavy metal pollution,which not only seriously affect the quality and safety of berries,but also restrict the healthy development of berry industry.Therefore,it is very important to study the detection and monitoring of key hazard factors affecting the quality and safety of blueberry,kiwifruit,R.roxburghii and raspberry,as well as the standardized production technology.Using literature analysis,field investigation,questionnaire survey,comprehensive analysis,SWOT analysis,laboratory testing and other methods,this paper made a comprehensive and in-depth study of the berry industry in Guizhou Province.Through the analysis of the current situation of the berry industry in Guizhou Province,the problems and shortcomings in the planting,management,sales and other aspects of the industry were revealed.In order to solve these problems,a series of practical measures were put forward,including strengthening pest control,optimizing pesticide application technology,and strictly controlling heavy metal pollution,so as to ensure the healthy and stable development of berry industry.The implementation of these measures will help to improve the overall quality level of the berry industry in Guizhou Province.
基金supported by Foundation for Research Support of the State of Bahia(FAPESB)the CAPES Foundation(Brazilian Ministry of Education+1 种基金Finance Code 001)for financial supportBahia Association of Cotton Producers。
文摘Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection pressure for resistant populations.Thus,this study aimed to detect insecticide resistance and assess insecticide control failure likelihood of boll weevil populations exposed to malathion,profenophos+cypermethrin,and fipronil insecticides.Results Twelve populations of the boll weevil were collected from commercial cotton fileds of the state of Bahia,northeastern Brazil.These populations were exposed to malathion,profenophos+cypermethrin mixture,and fipronil,at their respective maximum label dose for field applications.Three replicates of 10 adult beetles were exposed to the insecticides and mortality was recorded after 24 h treatment.The control failure likelihood was determined after 48 h.Highest median lethal times(LT_(50))were observed for malathion and the profenophos+cypermethrin mixture.Resistance to at least one insecticide was detected in 11 populations;three populations were resistant to malathion and profenophos+cypermethrin;seven were resistant to all insecticides tested.The resistance levels were low(<10-fold)for the three insecticides.Among 12 populations tested,58%of them exhibited significant risk of control failure for the insecticides malathion and profenophos+cypermethrin.The insecticide fipronil was efficient for the control of the boll weevil in 83%of the populations.Conclusions The results confirm the significant risk of insecticide control failure in the boll weevil populations to the main compounds used in the region.Thus,proper insecticide resistance management plans are necessary for the boll weevil in the region,particularly for malathion and profenophos+cypermethrin insecticides.
基金supported by the National Key Research and Development Program of China(2019YFD1002603-1)。
文摘PCR detection,quantitative real-time PCR(q-RTPCR),outdoor insect resistance,and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations(T2,T3,and T4)in transgenic maize germplasms(S3002 and 349)containing the bivalent genes(insect resistance gene Cry1Ab13-1 and disease resistance gene NPR1)and their corresponding wild type.Results indicated that the target genes Cry1Ab13-1 and NPR1 were successfully transferred into both germplasms through tested generations;q-PCR confirmed the expression of Cry1Ab13-1 and NPR1 genes in roots,stems,and leaves of tested maize plants.In addition,S3002 and 349 bivalent gene-transformed lines exhibited resistance to large leaf spots and corn borer in the field evaluation compared to the wild type.Our study confirmed that Cry1Ab13-1 and NPR1 bivalent genes enhanced the resistance against maize borer and large leaf spot disease and can stably inherit.These findings could be exploited for improving other cultivated maize varieties.
基金financially supported by the National Natural Science Foundation of China (31371951)the National Key Technology R&D Program for Grain Crops, Ministry of Science and Technology of China (2016YFD0300701)the Science and Technology Innovation Project of Hunan Academy of Agricultural Sciences, China (2017JC41)
文摘Rice is one of the most important staple foods for the world population,but it is attacked by a number of destructive pests.While evidence from greenhouse and laboratory tests has shown that silicon(Si)amendment can confer enhanced resistance to pests in rice,few studies have directly demonstrated the Si-mediated protection from pests in a field situation.In this study,field plots with silicon amendments at 0,75,150 and 300 kg SiO2 ha-1 in early-and late-season rice were employed to evaluate the effects of silicon amendment on the occurrence of major insect pests and diseases and rice yield.Compared with the control plots without silicon amendment,plant damage by stem borer and leaf folder and population size of planthopper were significantly lower in three to five of the seven monitoring observations in each season in the plots amended with 300 kg SiO2 ha-1.The disease index of rice blast in the early-season rice was lower in the plots amended with Si at 300 kg SiO2 ha-1 than in the control plots,while Si protection from rice blast in the late-season rice and from rice sheath blight in the early-season rice were not apparent.An insignificant increase of rice yield by 16.4%(604 kg ha-1)was observed in the plots amended with 300 kg SiO2 ha-1 over the control plots.Our results indicate that Si amendment at 300kg SiO2 ha-1 can provide substantial protection from some of the rice pests under field conditions.These findings support the recommendation of silicon amendment as a key component of integrated management of rice pests.
基金Supported by the Natural Science Fund for the Youth of Yunnan Agricultural University(2016ZR18)the Project of Key Laboratory of Integrated Pest Management on Crops in South China,Ministry of Agriculture,P.R.China(SCIPM2018-08)the Key Project of Agricultural Entomology and Pest Control in Yunnan Agricultural University(A2001206)
文摘Soybean rust,soybean downy mildew,and soybean thrips,soybean pod borers,and soybean nocturnal moths are the world wide diseases and insect pests in soybean production,which pose a potential threat to soybean production in Great Mekong Sub-region( GMS),comprising Cambodia,Lao People's Democratic Republic,Myanmar,Thailand,Vietnam,and Yunnan province,the People's Republic of China. This paper summarized the host range,epidemiology,damage and control methods of these diseases and insect pests in GMS,with the aim to provide information basis for understanding and effective control of soybean diseases and insect pests in GMS.
基金Supported by Science and Technology Innovation Project of Hebei Province(C19C0701-03)Key Technology R&D Program of Hebei Province(16226313D-4)Natural Science Foundation of Hebei Province(C2018301047)。
文摘In order to effectively deal with the problems of diseases and insect pests in the growth process of strawberry and to improve the quality and yield of strawberry,the main diseases and insect pests in strawberry cultivation such as powdery mildew,gray mold,anthracnose,red stele root rot,calcium deficiency,salt or fertilizer damage,aphids,red spiders,thrips,grubs,etc.and their identification methods were analyzed.The comprehensive pollution-free prevention and control techniques of these pests and diseases were explored,in order to provide technical guidance for high quality,efficient and harmless production of strawberry.
基金Supported by Fundamental Research Project of Guangxi Academy of Agricultural Sciences(GNK 2020YM45)Stable Funding Team Project of Guangxi Academy of Agricultural Sciences(GK 2021YT168)。
文摘[Objectives]The paper was to understand the species and harm of diseases and insect pests of Baccaurea ramiflora Lour.in Guangxi,and to provide basis for the prevention and control of diseases and insect pests.[Methods]From 2018 to 2021,a systematic investigation on diseases and insect pests of B.ramiflora was conducted in Dongxing City,Fangchenggang City,Longzhou County,Pingxiang City,Jingxi City and Napo County in Guangxi.[Results]There were 22 species of diseases and insect pests that harmed B.ramiflora in Guangxi,7 of which were diseases and 15 were insect pests.Leaf blight(Fuasrium spp.)was the main disease at seedling stage,causing severe damage,and anthracnose(Colletotrichum gloeosporioides Penz.)caused moderate damage.Cyclosia papilionaris Drury and Chrysochus chinensis Baly had high frequency of occurrence,wide damage area and severe damage.Cyclosia panthono Stoll and Lcerya aegyptiaca Douglas caused moderate damage,while other insect pests caused light damage.[Conclusions]The study lays a foundation for the scientific prevention and control of B.ramiflora diseases and insect pests,and promotes the sustainable and rapid development of B.ramiflora industry in Guangxi.
基金partly granted from the National Natural Science Foundation of China(U20A2023, 31870322)the Creative Research Groups of the Natural Science Foundation of Hubei Province,China (2020CFA009)the Hubei Hongshan Laboratory (2021hszd010)。
文摘As a natural genetic reservoir, wild rice contains many favorable alleles and mutations conferring high yield and resistance to biotic and abiotic stresses. However, there are few reports describing favorable genes or QTL from the AA genome wild rice O. longistaminata, which is characterized by tall and robust habit and long tassels and anthers and shows high potential for use in cultivated rice improvement. We constructed a stable BC_(2)F_(20) backcross inbred line(BIL) population of 152 lines from the cross of 9311 × O.longistaminat. Some BILs showed large panicles, large seeds, and strong resistance to rice false smut, bacterial leaf blight, rice blast spot, and brown planthopper. Genomic resequencing showed that the 152 BILs covered about 99.6% of the O. longistaminata genome. QTL mapping with 2432 bin markers revealed 13QTL associated with seven yield traits and eight with resistance to brown planthopper and to four diseases. Of these QTL, 12 for grain yield and 11 for pest and disease resistance are novel in Oryza species.A large-panicle NIL1880 line containing QTL qPB8.1 showed a nearly 50% increase in spikelet number and27.5% in grain yield compared to the recurrent parent 9311. These findings support the potential value of O. longistaminata for cultivated rice improvement.
文摘[Objective] The aim was to explore the effects of cultivation and seed reservation methods on quality and disease/insect damages of maca seed in cold highland areas,providing scientific references for cultivation and seed reservation and planning of maca vareity.[Method] Yellow,purple and black maca were selected and cultivated in the region with an elevation of 3 000 m to be experimental materials and cultivation and seed reservation methods were as follows:maca seed reservation in situ,seed reservation in original soils maca grown after selection of maca balls,and seed reservation in the region with an elevation of 2 700 m after selection of maca ball,seed reservation in greenhouses in the region with an elevation of 2 400 m after selection of maca ball,and growing selected balls in greenhouses and transplanting to the farmlands with an elevation of 2 400 m.[Result] The cultivation and seed reservation methods had significant or extremely significant effects on maca phenological phase;maca in different colors were treated by different cultivation and seed reservation methods,showing insignificant effects on disease and insect damages.[Conclusion] It can be concluded that the selected maca balls stored for 15 d as per the method grown in the region with an elevation of 2 700 m will improve seed quality and reduce disease or insect damages.
文摘The newly-hatched nymphs of the small brown planthopper (SBPH), Laodelphax striatellus, including field and sensitive populations, were subjected to the high-temperature (35°C) treatment. The number of yeast-like endosymbiotes in SBPH reduced by 23.47%–34.23%, 57.86%–61.51% and 88.96%–90.71% after the high-temperature treatment for 1 d, 2 d, and 3 d, respectively. However, the size of yeast-like endosymbiotes was not obviously affected. Resistance of SBPH to three insecticides (imidacloprid, chlorpyrifos and fipronil) decreased with the increase of treatment time.
基金the National Major Special Project for Breeding New Varieties of Genetically Modified Organisms(2016ZX08004-004).
文摘In agricultural production,a single insect-resistant and disease-resistant variety can no longer meet the demand.In this study,the expression vector pCAMBIA-3301-PR1 containing the disease-resistant gene PR1 was constructed by means of genetic engineering,and the PR1 gene was genetically transformed to contain the PR1 gene through the pollen tube method.In CryAb-8Like transgenic high-generation T7 receptor soybean,a new material that is resistant to insects and diseases is obtained.For T2 transformed plants,routine PCR detection,Southern Blot hybridization,fluorescence quantitative PCR detection,indoor and outdoor pest resistance identification and indoor disease resistance identification were performed.The results showed that there were 9 positive plants in the routine PCR test of T2 generation.In Southern Blot hybridization,both PR1 and CryAb-8Like genes are integrated in soybeans in the form of single copies.Fluorescence quantitative PCR showed that the expression levels of PR1 and CryAb-8Like genes are different in different tissues.The average expression levels of PR1 gene in plant roots,stems,and leaves are 2.88,1.54,and 5.26,respectively.CryAb-8Like genes are found in roots,stems,and leaves.The average expression levels were 1.36,1.39,and 4.25,respectively.The insectivorous rate of the CryAb-8Like gene in outdoor plants with positive insect resistance identification was 3.78%.The disc partition method was used indoors for pest resistance identification,and the bud length of transformed plants increased significantly.The average mortality rate of untransformed plants in indoor disease resistance identification was as high as 56.66%,and the average mortality rate of plants transformed with PR1 gene was 10.00%,and disease resistance was significantly improved.Therefore,a new material with resistance to diseases and insects is obtained.