[Objective] This study aimed to evaluate the effects of exogenous salicylic acid derivatives on tobacco resistance to TMV and activity of defense enzymes. [Method] The tobboco leaves were treated by exogenous salicyli...[Objective] This study aimed to evaluate the effects of exogenous salicylic acid derivatives on tobacco resistance to TMV and activity of defense enzymes. [Method] The tobboco leaves were treated by exogenous salicylic acid derivatives. Then, the disease occurrence was observed, and the activity of phenylalanin ammo- nia lyase (PAL) and peroxidase (POX) were measured. [Result] Exogenous salicylic acid derivative increased the activities of PAL and POX, while did not influence the resistance to TMV. [Conclusion] The result provides a theoretical basis for the study of plant disease resistance mechanisms.展开更多
The efficacy of seven plant extracts(neem,fennel,lavender,thyme,pennyroyal,salvia and asafetida) in controlling postharvest of apple(caused by Botrytis cinerea) was evaluated in vitro and in vivo.In vitro,all plant ex...The efficacy of seven plant extracts(neem,fennel,lavender,thyme,pennyroyal,salvia and asafetida) in controlling postharvest of apple(caused by Botrytis cinerea) was evaluated in vitro and in vivo.In vitro,all plant extracts treatments inhibited spore germination.Inhibitory rates of pore germination was 17.41 and 20.83% for neem extract treatment(methanolic and aqueous extracts,respectively) with significant difference compared to control(73.6 and 85.33%) for aqueous and methanol extracts.In the storage conditions,the application of aqueous extract of neem(at concentration of 25%) resulted in 89.11% reduction of disease severity compared with the untreated control.Results of enzymes activity showed the plant extracts can increase the activity of peroxidase,phenylalanine ammonia-lyase,β-1,3-glucanase and polyphenol oxidase in the presence of pathogens,in apple fruits.However,the results of this research revealed that application of neem extracts was more effective than the application of other plant extracts.According to this study,it could be concluded that plant extracts may be useful to control postharvest disease as a safe alternative option to chemical fungicides.展开更多
[Objective] This study aimed to explore the effects of spores and crude toxins of Helminthosporium gramineum Rabenh f. sp. echinochloae(HGE) on the ac- tivity of defensive enzymes of barnyardgrass [Echinochloa crus-...[Objective] This study aimed to explore the effects of spores and crude toxins of Helminthosporium gramineum Rabenh f. sp. echinochloae(HGE) on the ac- tivity of defensive enzymes of barnyardgrass [Echinochloa crus-galli (L.) Beauv.]. [Method] The effects of spores and crude toxins of HGE, as well as the mixture of spores and crude toxins on the activity of defensive enzymes in barnyardgrass were determined under laboratory conditions. [Result] Spores and crude toxins of HGE had varying degrees of effects on PAL and POD activity, and no obvious effect on SOD activity in barnyardgrass. In addition, spores and toxins had some similar im- pacts on the defensive enzymes in barnyardgrass. [Conclusion] Since toxins have similar effects on the hosts as spores of fungal pathogen do, they can be a substi- tute for the fungal pathogen in studying the partial pathogenic mechanism of this pathogen due to its complexity in pathogenic process.展开更多
Zhongshuang9, a new semi-winter Brassica napus variety with high resistance to Sclerotinia sclerotiorum and lodging, high-yield, double-low quality and extensive adaptability, was bred by multiple crossing and microsp...Zhongshuang9, a new semi-winter Brassica napus variety with high resistance to Sclerotinia sclerotiorum and lodging, high-yield, double-low quality and extensive adaptability, was bred by multiple crossing and microspore culture technique. It was registered and released in China in 2002. In regional trial of Hubei Province in China, Zhongshuang9 yielded 2 482. 2 kg ha-1 averagely in 2000 - 2002, 15. 33% higher than the control variety Zhongyou821. Erucic acid, glucosinolates and oil contents of Zhongshuang9 were 0.23%, 22.69 μmol g-1(in meal)and 42%, respectively. In field assessment of resistance to S. Sclerotiorum , the disease incidence and disease index of Zhongshuang9 averaged 13.31 % and 6.47, respectively, which were lower than those of Zhongyou821 by 28% and 36%, respectively. After inoculation of detached leaves with mycelia, the lesion size of Zhongshuang9 was 4. 709 cm2, which was significantly smaller than that of the mid-resistant variety Zhongyou821(5. 933 cm2). The stem lesion length of Zhongshuang9 after match-stick inoculation was 1.275 cm, which was significantly lower than that of Zhongyou821(1.943 cm). The possible mechanism of resistance to S. sclerotiorum was studied through comparing the activities of phenylalanine ammonia lyase(PAL), exo-chitinase, β-1, 3-glucanase, peroxidase(POD)and polyphenoloxidase(PPO)in Zhongshuang9 with those in other resistant, mid-resistant and susceptible cultivars.展开更多
Oligosaccharins are potent biomolecules which activate defense responses and resistance in tobacco plants. However, it is not known the systemic behavior of defensive enzymes activated by these elicitors. In this work...Oligosaccharins are potent biomolecules which activate defense responses and resistance in tobacco plants. However, it is not known the systemic behavior of defensive enzymes activated by these elicitors. In this work, the dynamic behavior of key defensive enzymes was evaluated in tobacco plant leaves previously treated through the roots with chitosan polymer (CH), chitosan (COS) and pectic (OGAS) oligosaccharides and Spermine (Sp). All macromolecules tested activated protein levels and defense enzymatic activity in tobacco leaves but with different response dynamics among them and depending on the biochemical variable evaluated. Defense response above control levels were detected since 12 hours after treatments and it consisted in a biphasic behavior with two peaks for PAL (EC 4.3.1.5) and β 1 - 3 glucanase (EC 3.2.1.6) enzymatic activities. The highest enzymatic levels for these enzymes were achieved at 48 hours in plantlets elicited with COS and at 72 hours for those plants treated with chitosan polymer, while the highest POD (EC 1.11.1.6) activity was detected with CH between 48 and 72 hours. These results demonstrated systemic defense activation by oligosaccharins in tobacco whose dynamic of defense response is affected by the kind of oligosaccharins tested. When applying OGAS by foliar spray on tobacco, systemic resistance against Phytoththora nicotianae was induced and plantlets were protected with the low concentration tested by 46% under the bioassays conditions performed. Moreover, enzymatic determinations on roots and leaves previous to plant-pathogen interaction showed increments above 30% of control levels for PAL and POD activities. It means that oligosaccharins activate local and systemic defense responses in plants in the absent of pathogen infection.展开更多
The small brown planthopper(SBPH), Laodelphax striatellus Fallén(Homoptera: Delphacidae), is a serious pest of rice(Oryza sativa L.) in China. To understand the mechanisms of rice resistance to SBPH, defense resp...The small brown planthopper(SBPH), Laodelphax striatellus Fallén(Homoptera: Delphacidae), is a serious pest of rice(Oryza sativa L.) in China. To understand the mechanisms of rice resistance to SBPH, defense response genes and related defense enzymes were examined in resistant and susceptible rice varieties in response to SBPH infestation. The salicylic acid(SA) synthesis-related genes phenylalanine ammonia-lyase(PAL), NPR1, EDS1 and PAD4 were induced rapidly and to a much higher level in the resistant variety Kasalath than in the susceptible cultivar Wuyujing 3 in response to SBPH infestation. The expression level of PAL in the Kasalath rice at 12 h post-infestation(hpi) increased 7.52-fold compared with the un-infested control, and the expression level in Kasalath was 49.63, 87.18, 57.36 and 75.06 times greater than that in Wuyujing 3 at 24, 36, 48 and 72 hpi, respectively. However, the transcriptional levels of the jasmonic acid(JA) synthesis-related genes LOX and AOS2 in resistant Kasalath were significantly lower than in susceptible Wuyujing 3 at 24, 36, 48 and 72 hpi. The activities of the defense enzymes PAL, peroxidase(POD), and polyphenol oxidase(PPO) increased remarkably in Kasalath in response to SBPH infestation, and were closely correlated with the PAL gene transcript level. Our results indicated that the SA signaling pathway was activated in the resistant Kasalath rice variety in response to SBPH infestation and that the gene PAL played a considerable role in the resistance to SBPH.展开更多
Natural products have long been a crucial source of,or provided inspiration for new agrochemical discovery.Naturally occurring 18β-glycyrrhetinic acid shows broad-spectrum bioactivities and is a potential skeleton fo...Natural products have long been a crucial source of,or provided inspiration for new agrochemical discovery.Naturally occurring 18β-glycyrrhetinic acid shows broad-spectrum bioactivities and is a potential skeleton for novel drug discovery.To extend the utility of 18β-glycyrrhetinic acid for agricultural uses,a series of novel 18β-glycyrrhetinic acid amide derivatives were prepared and evaluated for their antibacterial potency.Notably,compound 5k showed good antibacterial activity in vitro against Xanthomonas oryzae pv.oryzae(Xoo,EC50=3.64 mg L–1),and excellent protective activity(54.68%)against Xoo in vivo.Compound 5k induced excessive production and accumulation of reactive oxygen species in the tested pathogens,resulting in damaging the bacterial cell envelope.More interestingly,compound 5k could increase the activities of plant defense enzymes including catalase,superoxide dismutase,peroxidase,and phenylalanine ammonia lyase.Taken together,these enjoyable results suggested that designed compounds derived from 18β-glycyrrhetinic acid showed potential for controlling intractable plant bacterial diseases by disturbing the balance of the phytopathogen’s redox system and activating the plant defense system.展开更多
Heavy metal pollution can affect the immune capability of organisms. We evaluated the effect of cadmium (Cd) on the defense responses of the Pacific oyster Crassostrea gigas to Listonella anguillarum challenge. The ...Heavy metal pollution can affect the immune capability of organisms. We evaluated the effect of cadmium (Cd) on the defense responses of the Pacific oyster Crassostrea gigas to Listonella anguillarum challenge. The activities of several important defensive enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), acid phosphatase (ACP), Na+, K+-ATPase in gills and hepatopancreas, and phenoloxidase-like (POL) enzyme in hemolymph were assayed. In addition, the expression levels of several genes, including heat shock protein 90 (IrtSP9~)), metallothionein (MT), and bactericidal/permeability increasing (BPI) protein were quantified by fluorescent quantitative PCR. The enzyme activities of SOD, ACP, POL, and GPx in hepatopancreas, and the expression of HSP90 were down-regulated, whereas GPx activity in the gill, Na+, K+-ATPase activities in both tissues, and MT expression was increased in Cd- exposed oysters post L. anguillarum challenge. However, BPI expression was not significantly altered by co-stress of L. anguillarum infection and cadmium exposure. Our results suggest that cadmium exposure alters the oysters' immune responses and energy metabolism following vibrio infection.展开更多
Bark beetles Tomicus yunnanensis and T.minor are two important pests of Pinus yunnanensis and can cause massive death of pine trees.In this study,we examined several traits related to photosynthesis in P.yunnanensis a...Bark beetles Tomicus yunnanensis and T.minor are two important pests of Pinus yunnanensis and can cause massive death of pine trees.In this study,we examined several traits related to photosynthesis in P.yunnanensis and their relationship with antibiotic defense responses after joint attack by the two bark beetles at the shoot and the trunk stages.When shoots were attacked by the beetles,the abundance of chlorophylls,carotenoids,and the rates of net photosynthesis(Pn)and transpiration(E)decreased in needles,while the levels of superoxide dismutase and malondialdehyde remained unchanged in both needles and phloem.The activity of peroxidases also remained unchanged in needles,but increased in phloem.The activity of catalases increased in both needles and phloem.When trunks were attacked by the bark beetles,chlorophyll abundance,Pn,E,and antioxidative enzyme activities all declined,and the declines were more pronounced than in the attacked shoots.A decrease in protein concentrations was also observed in needles and phloem from the attacked pines.Attack on shoots by the bark beetles suppressed host defense and provided a favorable environment for larval growth and development,resulting in long-term decline of pine growth potential.The results suggest that attacks on trunks by beetles caused more severe damage to host trees than attacks on shoots.展开更多
Clonostachys rosea (C. rosea) is a biocontrol agent that is used to combat and prevent phytopathogenic fungi attacks because of its ability to involve many factors and diverse modes of action. The reactions of C. rose...Clonostachys rosea (C. rosea) is a biocontrol agent that is used to combat and prevent phytopathogenic fungi attacks because of its ability to involve many factors and diverse modes of action. The reactions of C. rosea on the control of gray mold disease in tomato leaves were investigated in this study. To investigate the reactions of C. rosea in inducing resistance to tomato plants, three treatments, including Botrytis cinerea treatment (treatment B), C. rosea treatment (treatment C), C. rosea and B. cinerea treatment (treatment C + B) and water (control), to be applied on tomato leaves were set up. Disease severity was subsequently evaluated and compared with the control. The treatment of tomato leaves with C. rosea (15 μg/ml) significantly reduced the disease index after inoculation and severity of gray mold caused by Botrytis cinerea. The results indicated that the C. rosea treatment stimulated the activity of the defense related enzymes: Peroxidases (POX), lipoxygenases (LOX) and glutathione S-transferases (GST), and the treatment C + B reduced the incidence and severity of the gray mold. Furthermore, C. rosea treatment increased the activity of pathogenesis related proteins PR1. Therefore, our results suggest that C. rosea could enhance the resistance of tomato plants to gray mold through the activation of defense genes and via the enhancement of defense-related enzymatic activities.展开更多
The experiment was carried out to assess the reaction of different categories of rice genotypes viz., resistant, susceptible, hybrid, scented, popular and wild in response to the infestation by rice leaffolder (RLF)...The experiment was carried out to assess the reaction of different categories of rice genotypes viz., resistant, susceptible, hybrid, scented, popular and wild in response to the infestation by rice leaffolder (RLF), Cnaphalocrocis medinalis (Guenee) and to explore the possible use of these genotypes in developing RLF-resistant rice varieties. The changes of various biochemical constituents such as leaf soluble protein, phenol, ortho-dihydroxy phenol, tannin and enzymes viz., peroxidase, phenyl alanine ammonia lyase (PAL) were assessed spectrophotometrically in all the rice genotypes before and after RLF infestation. The protein profile was analyzed using sodium dodecyl sulphate-poly acrylamide gel electrophoresis (SDS-PAGE) method. A significant constituent of biochemical content such as tannin, phenol and ortho-dihydroxy phenol has been increased along with enzyme activities of peroxidase and PAL in the infested resistant (Ptb 33, TKM6 and LFR831311) and wild rice genotypes (Oryza minuta and O. rhizomatis). A decrease in leaf protein content was evident invariably in all the infested rice genotypes. It is also evident that the contents of biochemicals such as phenol, ortho- dihydroxy phenol and tannin were negatively correlated with leaffolder damage. However, leaf protein content was positively correlated with the damage by rice leaffolder. SDS-PAGE analysis for total protein profiling of healthy and C. medinalis-infested genotypes revealed the enhanced expression of a high molecular weight (〉 97 kDa) protein in all the genotypes. Besides, there was also an increased induction of a 38 kDa protein in C. medinalis infested resistant genotypes, which was absent in uninfested plants. The present investigation proved that the elevated levels of biochemicals and enzymes may play a vital role in rice plants resistance to RLF.展开更多
There are different levels of resistance in Chinese cabbage varieties against clubroot.The content of catalase(CAT),peroxidase(POD),phenylalanin ammonia-lyase(PAL),Super Oxide Dismutase(SOD)and soluble sugar activitie...There are different levels of resistance in Chinese cabbage varieties against clubroot.The content of catalase(CAT),peroxidase(POD),phenylalanin ammonia-lyase(PAL),Super Oxide Dismutase(SOD)and soluble sugar activities of 3cultivars with different clubroot-resistant levelswere detected after inoculation in this study.The results suggest that the changing rates of CAT,PAL and SOD contents of resistance cultivars after inoculation were higher than those of susceptible cultivars(Baigengbaiye>Zaobaicaitai>Huangjinxiaobaicai);the POD activities of resistance cultivars reached a peak on an earlier day than those of susceptible cultivars;the increasing rate of soluble sugar of susceptible cultivars was higher than that of the resistance cultivars,and ended with two peaks.Therefore,the four enzymes(CAT,POD,PAL and SOD)and soluble sugar may be used as physiological and biochemical reference indexes for the resistance identification to clubroot after inoculation with P.brassicae.展开更多
褐腐病是采后桃果实最主要的侵染性病害之一,而我国桃褐腐病主要是由链核盘菌属引起,会严重降低果实品质,造成大量损失。为解析桃果实病原菌胁迫响应机制,该文采用分光光度法测定抗病相关酶活性并基于转录组学解析桃果实响应果生链核盘...褐腐病是采后桃果实最主要的侵染性病害之一,而我国桃褐腐病主要是由链核盘菌属引起,会严重降低果实品质,造成大量损失。为解析桃果实病原菌胁迫响应机制,该文采用分光光度法测定抗病相关酶活性并基于转录组学解析桃果实响应果生链核盘菌的分子机制。结果发现,桃果实的过氧化物酶、苯丙氨酸解氨酶和β-1,3-葡聚糖酶在侵染的不同时期启动了响应反应,参与了桃果实抵御果生链核盘菌侵染过程。基因本体(gene ontology,GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)富集分析表明,桃果实对果生链核盘菌的侵染会产生复杂的防御反应。展开更多
基金Supported by University Student Science and Technology Innovation Plan of Zhejiang Province(2011R412033)~~
文摘[Objective] This study aimed to evaluate the effects of exogenous salicylic acid derivatives on tobacco resistance to TMV and activity of defense enzymes. [Method] The tobboco leaves were treated by exogenous salicylic acid derivatives. Then, the disease occurrence was observed, and the activity of phenylalanin ammo- nia lyase (PAL) and peroxidase (POX) were measured. [Result] Exogenous salicylic acid derivative increased the activities of PAL and POX, while did not influence the resistance to TMV. [Conclusion] The result provides a theoretical basis for the study of plant disease resistance mechanisms.
文摘The efficacy of seven plant extracts(neem,fennel,lavender,thyme,pennyroyal,salvia and asafetida) in controlling postharvest of apple(caused by Botrytis cinerea) was evaluated in vitro and in vivo.In vitro,all plant extracts treatments inhibited spore germination.Inhibitory rates of pore germination was 17.41 and 20.83% for neem extract treatment(methanolic and aqueous extracts,respectively) with significant difference compared to control(73.6 and 85.33%) for aqueous and methanol extracts.In the storage conditions,the application of aqueous extract of neem(at concentration of 25%) resulted in 89.11% reduction of disease severity compared with the untreated control.Results of enzymes activity showed the plant extracts can increase the activity of peroxidase,phenylalanine ammonia-lyase,β-1,3-glucanase and polyphenol oxidase in the presence of pathogens,in apple fruits.However,the results of this research revealed that application of neem extracts was more effective than the application of other plant extracts.According to this study,it could be concluded that plant extracts may be useful to control postharvest disease as a safe alternative option to chemical fungicides.
基金Supported by Research Fund of the State Tobacco Monopoly Bureau(110201002002)the Open Research Project of Key Laboratory of Tobacco Genetics and Breeding in the Tobacco Industry(TB201006)~~
文摘[Objective] This study aimed to explore the effects of spores and crude toxins of Helminthosporium gramineum Rabenh f. sp. echinochloae(HGE) on the ac- tivity of defensive enzymes of barnyardgrass [Echinochloa crus-galli (L.) Beauv.]. [Method] The effects of spores and crude toxins of HGE, as well as the mixture of spores and crude toxins on the activity of defensive enzymes in barnyardgrass were determined under laboratory conditions. [Result] Spores and crude toxins of HGE had varying degrees of effects on PAL and POD activity, and no obvious effect on SOD activity in barnyardgrass. In addition, spores and toxins had some similar im- pacts on the defensive enzymes in barnyardgrass. [Conclusion] Since toxins have similar effects on the hosts as spores of fungal pathogen do, they can be a substi- tute for the fungal pathogen in studying the partial pathogenic mechanism of this pathogen due to its complexity in pathogenic process.
文摘Zhongshuang9, a new semi-winter Brassica napus variety with high resistance to Sclerotinia sclerotiorum and lodging, high-yield, double-low quality and extensive adaptability, was bred by multiple crossing and microspore culture technique. It was registered and released in China in 2002. In regional trial of Hubei Province in China, Zhongshuang9 yielded 2 482. 2 kg ha-1 averagely in 2000 - 2002, 15. 33% higher than the control variety Zhongyou821. Erucic acid, glucosinolates and oil contents of Zhongshuang9 were 0.23%, 22.69 μmol g-1(in meal)and 42%, respectively. In field assessment of resistance to S. Sclerotiorum , the disease incidence and disease index of Zhongshuang9 averaged 13.31 % and 6.47, respectively, which were lower than those of Zhongyou821 by 28% and 36%, respectively. After inoculation of detached leaves with mycelia, the lesion size of Zhongshuang9 was 4. 709 cm2, which was significantly smaller than that of the mid-resistant variety Zhongyou821(5. 933 cm2). The stem lesion length of Zhongshuang9 after match-stick inoculation was 1.275 cm, which was significantly lower than that of Zhongyou821(1.943 cm). The possible mechanism of resistance to S. sclerotiorum was studied through comparing the activities of phenylalanine ammonia lyase(PAL), exo-chitinase, β-1, 3-glucanase, peroxidase(POD)and polyphenoloxidase(PPO)in Zhongshuang9 with those in other resistant, mid-resistant and susceptible cultivars.
文摘Oligosaccharins are potent biomolecules which activate defense responses and resistance in tobacco plants. However, it is not known the systemic behavior of defensive enzymes activated by these elicitors. In this work, the dynamic behavior of key defensive enzymes was evaluated in tobacco plant leaves previously treated through the roots with chitosan polymer (CH), chitosan (COS) and pectic (OGAS) oligosaccharides and Spermine (Sp). All macromolecules tested activated protein levels and defense enzymatic activity in tobacco leaves but with different response dynamics among them and depending on the biochemical variable evaluated. Defense response above control levels were detected since 12 hours after treatments and it consisted in a biphasic behavior with two peaks for PAL (EC 4.3.1.5) and β 1 - 3 glucanase (EC 3.2.1.6) enzymatic activities. The highest enzymatic levels for these enzymes were achieved at 48 hours in plantlets elicited with COS and at 72 hours for those plants treated with chitosan polymer, while the highest POD (EC 1.11.1.6) activity was detected with CH between 48 and 72 hours. These results demonstrated systemic defense activation by oligosaccharins in tobacco whose dynamic of defense response is affected by the kind of oligosaccharins tested. When applying OGAS by foliar spray on tobacco, systemic resistance against Phytoththora nicotianae was induced and plantlets were protected with the low concentration tested by 46% under the bioassays conditions performed. Moreover, enzymatic determinations on roots and leaves previous to plant-pathogen interaction showed increments above 30% of control levels for PAL and POD activities. It means that oligosaccharins activate local and systemic defense responses in plants in the absent of pathogen infection.
基金sponsored by the National Nature Science Foundation of China (30971746)the Major Project for Breeding Genetically Modified Organisms (2009ZX08009-046B)
文摘The small brown planthopper(SBPH), Laodelphax striatellus Fallén(Homoptera: Delphacidae), is a serious pest of rice(Oryza sativa L.) in China. To understand the mechanisms of rice resistance to SBPH, defense response genes and related defense enzymes were examined in resistant and susceptible rice varieties in response to SBPH infestation. The salicylic acid(SA) synthesis-related genes phenylalanine ammonia-lyase(PAL), NPR1, EDS1 and PAD4 were induced rapidly and to a much higher level in the resistant variety Kasalath than in the susceptible cultivar Wuyujing 3 in response to SBPH infestation. The expression level of PAL in the Kasalath rice at 12 h post-infestation(hpi) increased 7.52-fold compared with the un-infested control, and the expression level in Kasalath was 49.63, 87.18, 57.36 and 75.06 times greater than that in Wuyujing 3 at 24, 36, 48 and 72 hpi, respectively. However, the transcriptional levels of the jasmonic acid(JA) synthesis-related genes LOX and AOS2 in resistant Kasalath were significantly lower than in susceptible Wuyujing 3 at 24, 36, 48 and 72 hpi. The activities of the defense enzymes PAL, peroxidase(POD), and polyphenol oxidase(PPO) increased remarkably in Kasalath in response to SBPH infestation, and were closely correlated with the PAL gene transcript level. Our results indicated that the SA signaling pathway was activated in the resistant Kasalath rice variety in response to SBPH infestation and that the gene PAL played a considerable role in the resistance to SBPH.
基金fundings provided by the National Natural Science Foundation of China(21877021 and 32160661)the Guizhou Provincial S&T Program[(2018)4007]the Program of Introducing Talents of Discipline to Universities of China(D20023,111 Program).
文摘Natural products have long been a crucial source of,or provided inspiration for new agrochemical discovery.Naturally occurring 18β-glycyrrhetinic acid shows broad-spectrum bioactivities and is a potential skeleton for novel drug discovery.To extend the utility of 18β-glycyrrhetinic acid for agricultural uses,a series of novel 18β-glycyrrhetinic acid amide derivatives were prepared and evaluated for their antibacterial potency.Notably,compound 5k showed good antibacterial activity in vitro against Xanthomonas oryzae pv.oryzae(Xoo,EC50=3.64 mg L–1),and excellent protective activity(54.68%)against Xoo in vivo.Compound 5k induced excessive production and accumulation of reactive oxygen species in the tested pathogens,resulting in damaging the bacterial cell envelope.More interestingly,compound 5k could increase the activities of plant defense enzymes including catalase,superoxide dismutase,peroxidase,and phenylalanine ammonia lyase.Taken together,these enjoyable results suggested that designed compounds derived from 18β-glycyrrhetinic acid showed potential for controlling intractable plant bacterial diseases by disturbing the balance of the phytopathogen’s redox system and activating the plant defense system.
基金Supported by the 100 Talents Program of Chinese Academy of Sciencesthe Development Plan of Science and Technology in Shandong Province(No.2012GGA06032)the Key Deployment Program of Chinese Academy of Sciences(No.KZZD-EW-14-03)
文摘Heavy metal pollution can affect the immune capability of organisms. We evaluated the effect of cadmium (Cd) on the defense responses of the Pacific oyster Crassostrea gigas to Listonella anguillarum challenge. The activities of several important defensive enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), acid phosphatase (ACP), Na+, K+-ATPase in gills and hepatopancreas, and phenoloxidase-like (POL) enzyme in hemolymph were assayed. In addition, the expression levels of several genes, including heat shock protein 90 (IrtSP9~)), metallothionein (MT), and bactericidal/permeability increasing (BPI) protein were quantified by fluorescent quantitative PCR. The enzyme activities of SOD, ACP, POL, and GPx in hepatopancreas, and the expression of HSP90 were down-regulated, whereas GPx activity in the gill, Na+, K+-ATPase activities in both tissues, and MT expression was increased in Cd- exposed oysters post L. anguillarum challenge. However, BPI expression was not significantly altered by co-stress of L. anguillarum infection and cadmium exposure. Our results suggest that cadmium exposure alters the oysters' immune responses and energy metabolism following vibrio infection.
基金supported by the Fundamental Scientific Research Fund for Central Non-profit Research Institute(Grant No.CAFYBB2016MA006)the Public Welfare Special Fund Project of Forestry Industry of State Forestry Administration of China(Grant No.200904052)
文摘Bark beetles Tomicus yunnanensis and T.minor are two important pests of Pinus yunnanensis and can cause massive death of pine trees.In this study,we examined several traits related to photosynthesis in P.yunnanensis and their relationship with antibiotic defense responses after joint attack by the two bark beetles at the shoot and the trunk stages.When shoots were attacked by the beetles,the abundance of chlorophylls,carotenoids,and the rates of net photosynthesis(Pn)and transpiration(E)decreased in needles,while the levels of superoxide dismutase and malondialdehyde remained unchanged in both needles and phloem.The activity of peroxidases also remained unchanged in needles,but increased in phloem.The activity of catalases increased in both needles and phloem.When trunks were attacked by the bark beetles,chlorophyll abundance,Pn,E,and antioxidative enzyme activities all declined,and the declines were more pronounced than in the attacked shoots.A decrease in protein concentrations was also observed in needles and phloem from the attacked pines.Attack on shoots by the bark beetles suppressed host defense and provided a favorable environment for larval growth and development,resulting in long-term decline of pine growth potential.The results suggest that attacks on trunks by beetles caused more severe damage to host trees than attacks on shoots.
文摘Clonostachys rosea (C. rosea) is a biocontrol agent that is used to combat and prevent phytopathogenic fungi attacks because of its ability to involve many factors and diverse modes of action. The reactions of C. rosea on the control of gray mold disease in tomato leaves were investigated in this study. To investigate the reactions of C. rosea in inducing resistance to tomato plants, three treatments, including Botrytis cinerea treatment (treatment B), C. rosea treatment (treatment C), C. rosea and B. cinerea treatment (treatment C + B) and water (control), to be applied on tomato leaves were set up. Disease severity was subsequently evaluated and compared with the control. The treatment of tomato leaves with C. rosea (15 μg/ml) significantly reduced the disease index after inoculation and severity of gray mold caused by Botrytis cinerea. The results indicated that the C. rosea treatment stimulated the activity of the defense related enzymes: Peroxidases (POX), lipoxygenases (LOX) and glutathione S-transferases (GST), and the treatment C + B reduced the incidence and severity of the gray mold. Furthermore, C. rosea treatment increased the activity of pathogenesis related proteins PR1. Therefore, our results suggest that C. rosea could enhance the resistance of tomato plants to gray mold through the activation of defense genes and via the enhancement of defense-related enzymatic activities.
文摘The experiment was carried out to assess the reaction of different categories of rice genotypes viz., resistant, susceptible, hybrid, scented, popular and wild in response to the infestation by rice leaffolder (RLF), Cnaphalocrocis medinalis (Guenee) and to explore the possible use of these genotypes in developing RLF-resistant rice varieties. The changes of various biochemical constituents such as leaf soluble protein, phenol, ortho-dihydroxy phenol, tannin and enzymes viz., peroxidase, phenyl alanine ammonia lyase (PAL) were assessed spectrophotometrically in all the rice genotypes before and after RLF infestation. The protein profile was analyzed using sodium dodecyl sulphate-poly acrylamide gel electrophoresis (SDS-PAGE) method. A significant constituent of biochemical content such as tannin, phenol and ortho-dihydroxy phenol has been increased along with enzyme activities of peroxidase and PAL in the infested resistant (Ptb 33, TKM6 and LFR831311) and wild rice genotypes (Oryza minuta and O. rhizomatis). A decrease in leaf protein content was evident invariably in all the infested rice genotypes. It is also evident that the contents of biochemicals such as phenol, ortho- dihydroxy phenol and tannin were negatively correlated with leaffolder damage. However, leaf protein content was positively correlated with the damage by rice leaffolder. SDS-PAGE analysis for total protein profiling of healthy and C. medinalis-infested genotypes revealed the enhanced expression of a high molecular weight (〉 97 kDa) protein in all the genotypes. Besides, there was also an increased induction of a 38 kDa protein in C. medinalis infested resistant genotypes, which was absent in uninfested plants. The present investigation proved that the elevated levels of biochemicals and enzymes may play a vital role in rice plants resistance to RLF.
基金Supported by Commonweal Specialized Research Fund of China Agriculture(Grant No.201003029)Collaborative Innovation Center of Grain and Oil crops in South China
文摘There are different levels of resistance in Chinese cabbage varieties against clubroot.The content of catalase(CAT),peroxidase(POD),phenylalanin ammonia-lyase(PAL),Super Oxide Dismutase(SOD)and soluble sugar activities of 3cultivars with different clubroot-resistant levelswere detected after inoculation in this study.The results suggest that the changing rates of CAT,PAL and SOD contents of resistance cultivars after inoculation were higher than those of susceptible cultivars(Baigengbaiye>Zaobaicaitai>Huangjinxiaobaicai);the POD activities of resistance cultivars reached a peak on an earlier day than those of susceptible cultivars;the increasing rate of soluble sugar of susceptible cultivars was higher than that of the resistance cultivars,and ended with two peaks.Therefore,the four enzymes(CAT,POD,PAL and SOD)and soluble sugar may be used as physiological and biochemical reference indexes for the resistance identification to clubroot after inoculation with P.brassicae.
文摘褐腐病是采后桃果实最主要的侵染性病害之一,而我国桃褐腐病主要是由链核盘菌属引起,会严重降低果实品质,造成大量损失。为解析桃果实病原菌胁迫响应机制,该文采用分光光度法测定抗病相关酶活性并基于转录组学解析桃果实响应果生链核盘菌的分子机制。结果发现,桃果实的过氧化物酶、苯丙氨酸解氨酶和β-1,3-葡聚糖酶在侵染的不同时期启动了响应反应,参与了桃果实抵御果生链核盘菌侵染过程。基因本体(gene ontology,GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)富集分析表明,桃果实对果生链核盘菌的侵染会产生复杂的防御反应。