期刊文献+
共找到131篇文章
< 1 2 7 >
每页显示 20 50 100
Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton(Gossypium hirsutum L.) 被引量:1
1
作者 Huaxiang Wu Xiaohui Song +3 位作者 Muhammad Waqas-Amjid Chuan Chen Dayong Zhang Wangzhen Guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3406-3418,共13页
Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton ... Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding. 展开更多
关键词 cotton root-morphology traits quantitative trait loci candidate genes GWAS
下载PDF
Analyses and identifications of quantitative trait loci and candidate genes controlling mesocotyl elongation in rice 被引量:1
2
作者 ZHANG Xi-juan LAI Yong-cai +11 位作者 MENG Ying TANG Ao DONG Wen-jun LIU You-hong LIU Kai WANG Li-zhi YANG Xian-li WANG Wen-long DING Guo-hua JIANG Hui REN Yang JIANG Shu-kun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期325-340,共16页
Rice direct seeding has the significant potential to save labor and water,conserve environmental resources,and reduce greenhouse gas emissions tremendously.Therefore,rice direct seeding is becoming the major cultivati... Rice direct seeding has the significant potential to save labor and water,conserve environmental resources,and reduce greenhouse gas emissions tremendously.Therefore,rice direct seeding is becoming the major cultivation technology applied to rice production in many countries.Identifying and utilizing genes controlling mesocotyl elongation is an effective approach to accelerate breeding procedures and meet the requirements for direct-seeded rice(DSR) production.This study used a permanent mapping population with 144 recombinant inbred lines(RILs) and 2 828 bin-markers to detect quantitative trait loci(QTLs) associated with mesocotyl length in 2019 and 2020.The mesocotyl lengths of the rice RILs and their parents,Lijiangxintuanheigu(LTH) and Shennong 265(SN265),were measured in a growth chamber at 30°C in a dark environment.A total of 16 QTLs for mesocotyl length were identified on chromosomes 1(2),2(4),3(2),4,5,6,7,9,11(2),and 12.Seven of these QTLs,including qML1a,qML1b,qML2d,qML3a,qML3b,qML5,and qML11b,were reproducibly detected in both years via the interval mapping method.The major QTL,qML3a,was reidentified in two years via the composite interval mapping method.A total of 10 to 413 annotated genes for each QTL were identified in their smallest genetic intervals of 37.69 kb to 2.78 Mb,respectively.Thirteen predicted genes within a relatively small genetic interval(88.18 kb) of the major mesocotyl elongation QTL,qML3a,were more thoroughly analyzed.Finally,the coding DNA sequence variations among SN265,LTH,and Nipponbare indicated that the LOC_Os03g50550 gene was the strongest candidate gene for the qML3a QTL controlling the mesocotyl elongation.This LOC_Os03g50550 gene encodes a mitogen-activated protein kinase.Relative gene expression analysis using qRT-RCR further revealed that the expression levels of the LOC_Os03g50550 gene in the mesocotyl of LTH were significantly lower than in the mesocotyl of SN265.In conclusion,these results further strengthen our knowledge about rice’s genetic mechanisms of mesocotyl elongation.This investigation’s discoveries will help to accelerate breeding programs for new DSR variety development. 展开更多
关键词 japonica rice direct-seeded rice(DSR) mesocotyl elongation quantitative trait loci candidate gene
下载PDF
Genome-wide association study reveals candidate genes for gummy stem blight resistance in cucumber 被引量:2
3
作者 Jianan Han Shaoyun Dong +5 位作者 Yanxia Shi Zhuonan Dai Han Miao Baoju Li Xingfang Gu Shengping Zhang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第2期261-272,共12页
Gummy stem blight(GSB),caused by Didymella bryoniae,is a serious fungal disease that leads to decline in cucumber yield and quality.The molecular mechanism of GSB resistance in cucumber remains unclear.Here,we investi... Gummy stem blight(GSB),caused by Didymella bryoniae,is a serious fungal disease that leads to decline in cucumber yield and quality.The molecular mechanism of GSB resistance in cucumber remains unclear.Here,we investigated the GSB resistance of cucumber core germplasms from four geographic groups at the seedling and adult stages.A total of 9 SNPs related to GSB resistance at the seedling stage and 26 SNPs at the adult stage were identified,of which some are co-localized to previously mapped Quantitative trait loci(QTLs)for GSB resistance(gsb3.2/gsb3.3,gsb5.1,and gsb-s6.2).Based on haplotype analysis and expression levels after inoculation,four candidate genes were identified within the region identified by both Genome-wide association study(GWAS)and previous identified QTL mapping,including Csa3G129470 for gsb3.2/gsb3.3,Csa5G606820 and Csa5G606850 for gsb5.1,and Csa6G079730 for gsb-s6.2.The novel GSB resistant accessions,significant SNPs,and candidate genes facilitate the breeding of GSB resistant cucumber cultivars and provide a novel idea for understanding GSB resistance mechanism in cucumber. 展开更多
关键词 Cucumber(Cucumis sativus L.) GSB GWAS quantitative trait loci QTL Candidate genes
下载PDF
Mining candidate genes of grape berry cracking based on high density genetic map 被引量:2
4
作者 Chuan Zhang Liwen Cui +2 位作者 Chonghuai Liu Xiucai Fan Jinggui Fang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期743-753,共11页
Fruit cracking is a phenomenon in which the peel cracks during grape berry development,which seriously affects the yield and quality of the fruit.However,there are few studies on the mining of candidate genes related ... Fruit cracking is a phenomenon in which the peel cracks during grape berry development,which seriously affects the yield and quality of the fruit.However,there are few studies on the mining of candidate genes related to berry cracking.In order to better understand the genetic basis of berry cracking,we used the results of previous quantitative trait locus(QTL)mapping,combined with field surveys of berry-cracking types and the berry-cracking rate,to mine candidate berry-cracking genes.The results showed that three identical QTL loci were detected in two years(2019 and 2020);and three candidate genes were annotated in the QTL interval.In mature berries,the expressions of the candidate genes were more abundant in the cracking-susceptible parent(‘Crimson Seedless’)than in the cracking-resistant parent(‘Muscat Hamburg’).Grape berry cracking is a complex trait controlled by multiple genes,mainly including genes encoding cellulose synthase–like protein H1,glucan endo-1,3-beta-glucosidase 12,and brassinosteroid insensitive 1-associated receptor kinase 1.The high expression of the candidate berry-cracking genes may promote the occurrence of berry cracking.This study helps elucidate the genetic mechanism of grape berry cracking. 展开更多
关键词 Grape berry Berry-cracking rate Berry-cracking type Candidate gene quantitative trait loci
下载PDF
Candidate genes for mastitis resistance in dairy cattle:a data integration approach
5
作者 Zala Brajnik Jernej Ogorevc 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第3期966-979,共14页
Background Inflammation of the mammary tissue(mastitis)is one of the most detrimental health conditions in dairy ruminants and is considered the most economically important infectious disease of the dairy sector.Impro... Background Inflammation of the mammary tissue(mastitis)is one of the most detrimental health conditions in dairy ruminants and is considered the most economically important infectious disease of the dairy sector.Improving mastitis resistance is becoming an important goal in dairy ruminant breeding programmes.However,mastitis resistance is a complex trait and identification of mastitis-associated alleles in livestock is difficult.Currently,the only applicable approach to identify candidate loci for complex traits in large farm animals is to combine different information that supports the functionality of the identified genomic regions with respect to a complex trait.Methods To identify the most promising candidate loci for mastitis resistance we integrated heterogeneous data from multiple sources and compiled the information into a comprehensive database of mastitis-associated candidate loci.Mastitis-associated candidate genes reported in association,expression,and mouse model studies were collected by searching the relevant literature and databases.The collected data were integrated into a single database,screened for overlaps,and used for gene set enrichment analysis.Results The database contains candidate genes from association and expression studies and relevant transgenic mouse models.The 2448 collected candidate loci are evenly distributed across bovine chromosomes.Data integration and analysis revealed overlaps between different studies and/or with mastitis-associated QTL,revealing promising candidate genes for mastitis resistance.Conclusion Mastitis resistance is a complex trait influenced by numerous alleles.Based on the number of independent studies,we were able to prioritise candidate genes and propose a list of the 22 most promising.To our knowledge this is the most comprehensive database of mastitis associated candidate genes and could be helpful in selecting genes for functional validation studies. 展开更多
关键词 Association study Candidate genes EPIGENETICS Mammary gland MASTITIS quantitative trait loci
下载PDF
Quantitative Trait Loci for Resistance to Stripe Disease in Rice(Oryza sativa) 被引量:1
6
作者 SUN Dai-zhen JIANG Ling +3 位作者 ZHANG Ying-xin CHENG Xia-nian ZHAI Hu-qu WAN Jian-min 《Rice science》 SCIE 2007年第2期157-160,共4页
In order to map the quantitative trait loci for rice stripe resistance, a molecular linkage map was constructed based on the F2 population derived from a cross between Zhaiyeqing 8 and Wuyujing 3. Reactions of the two... In order to map the quantitative trait loci for rice stripe resistance, a molecular linkage map was constructed based on the F2 population derived from a cross between Zhaiyeqing 8 and Wuyujing 3. Reactions of the two parents, F1 individual and 129 F2:3 lines to, rice stripe were JnvestJgated by both artificial Jnoculation at laboratory and natural infection in the field, and the ratios of disease rating index were scored. The distribution of the ratios of disease rating index in Zhaiyeqing 8/Wuyujing 3 F2:3 population ranged from 0 to 134,08 and from 6.25 to 133.6 under artificial inoculation at laboratory and natural infection in the field, respectively, and showed a marked bias towards resistant parent (Zhaiyeqing 8), indicating that the resistance to rice stripe was controlled by quantitative trait loci (QTL). QTL analysis showed that the QTLs detected by the two inoculation methods were completely different. Only one QTL, qSTVT, was detected under artificial inoculation, at which the Zhaiyeqing 8 allele increased the resistance to rice stripe, while two QTLs, qSTV5 and qSTV1, were detected under natural infection, in which resistant alleles came from Zhaiyeqing 8 and Wuyujing 3, respectively. These results showed that resistant parent Zhaiyeqing 8 carried the alleles associated with the resistance to rice stripe virus and the small brown planthopper, and susceptible parent Wuyujing 3 also carried the resistant allele to rice stripe virus. In comparison with the results previously reported, QTLs detected in the study were new resistant genes to rice stripe disease. This will provide a new resistant resource for avoiding genetic vulnerability for single utilization of the resistant gene Stvb-i. 展开更多
关键词 RICE RESISTANCE rice stripe quantitative trait loci artificial inoculation natural infection
下载PDF
Identification of QTLs and candidate genes for physiological traits associated with drought tolerance in cotton 被引量:5
7
作者 MAGWANGA Richard Odongo LU Pu +5 位作者 KIRUNGU Joy Nyangasi CAI Xiaoyan ZHOU Zhongli AGONG Stephen Gaya WANG Kunbo LIU Fang 《Journal of Cotton Research》 2020年第1期13-45,共33页
Background:Cotton is mainly grown for its natural fiber and edible oil.The fiber obtained from cotton is the indispensable raw material for the textile industries.The ever changing climatic condition,threatens cotton ... Background:Cotton is mainly grown for its natural fiber and edible oil.The fiber obtained from cotton is the indispensable raw material for the textile industries.The ever changing climatic condition,threatens cotton production due to a lack of sufficient water for its cultivation.Effects of drought stress are estimated to affect more than 50%of the cotton growing regions.To elucidate the drought tolerance phenomenon in cotton,a backcross population was developed from G.tomentosum,a drought tolerant donor parent and G.hirsutum which is highly susceptible to drought stress.Results:A genetic map of 10888 SNP markers was developed from 200 BC_2F_2 populations.The map spanned 4191.3 centi-Morgan(c M),with an average distance of 0.1047 c M,covering 51%and 49%of At and Dt sub genomes,respectively.Thirty stable Quantitative trait loci(QTLs)were detected,in which more than a half were detected in the At subgenome.Eighty-nine candidate genes were mined within the QTL regions for three traits:cell membrane stability(CMS),saturated leaf weight(SLW)and chlorophyll content.The genes had varied physiochemical properties.A majority of the genes were interrupted by introns,and only 15 genes were intronless,accounting for 17%of the mined genes.The genes were found to be involved molecular function(MF),cellular component(CC)and biological process(BP),which are the main gene ontological(GO)functions.A number of mi RNAs were detected,such as mi R164,which is associated with NAC and MYB genes,with a profound role in enhancing drought tolerance in plants.Through RT-q PCR analysis,5 genes were found to be the key genes involved in enhancing drought tolerance in cotton.Wild cotton harbors a number of favorable alleles,which can be exploited to aid in improving the narrow genetic base of the elite cotton cultivars.The detection of 30 stable QTLs and 89 candidate genes found to be contributed by the donor parent,G.tomentosum,showed the significant genes harbored by the wild progenitors which can be exploited in developing more robust cotton genotypes with diverse tolerance levels to various environmental stresses.Conclusion:This was the first study involving genome wide association mapping for drought tolerance traits in semi wild cotton genotypes.It offers an opportunity for future exploration of these genes in developing highly tolerant cotton cultivars to boost cotton production. 展开更多
关键词 COTTON spp. quantitative trait loci Genetic map Drought tolerance mi RNAS Gene ontology
下载PDF
Quantitative trait loci detection of E dwardsiella tarda resistance in Japanese flounder Paralichthys olivaceus using bulked segregant analysis 被引量:4
8
作者 王晓夏 徐文腾 +4 位作者 刘洋 王磊 孙何军 王磊 陈松林 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2016年第6期1297-1308,共12页
In recent years, Edwardsiella tarda has become one of the most deadly pathogens of Japanese fl ounder( Paralichthys olivaceus), causing serious annual losses in commercial production. In contrast to the rapid advances... In recent years, Edwardsiella tarda has become one of the most deadly pathogens of Japanese fl ounder( Paralichthys olivaceus), causing serious annual losses in commercial production. In contrast to the rapid advances in the aquaculture of P. o livaceus, the study of E. tarda resistance-related markers has lagged behind, hindering the development of a disease-resistant strain. Thus, a marker-trait association analysis was initiated, combining bulked segregant analysis(BSA) and quantitative trait loci(QTL) mapping. Based on 180 microsatellite loci across all chromosomes, 106 individuals from the F1333(♀: F0768 ×♂: F0915)(Nomenclature rule: F+year+family number) were used to detect simple sequence repeats(SSRs) and QTLs associated with E. tarda resistance. After a genomic scan, three markers(Scaffold 404-21589, Scaffold 404-21594 and Scaffold 270-13812) from the same linkage group(LG)-1 exhibited a signifi cant difference between DNA, pooled/bulked from the resistant and susceptible groups( P <0.001). Therefore, 106 individuals were genotyped using all the SSR markers in LG1 by single marker analysis. Two different analytical models were then employed to detect SSR markers with different levels of signifi cance in LG1, where 17 and 18 SSR markers were identifi ed, respectively. Each model found three resistance-related QTLs by composite interval mapping(CIM). These six QTLs, designated q E1–6, explained 16.0%–89.5% of the phenotypic variance. Two of the QTLs, q E-2 and q E-4, were located at the 66.7 c M region, which was considered a major candidate region for E. tarda resistance. This study will provide valuable data for further investigations of E. tarda resistance genes and facilitate the selective breeding of disease-resistant Japanese fl ounder in the future. 展开更多
关键词 Paralichthys olivaceus Edwardsiella tarda disease resistance simple sequence repeats(SSRs) bulked segregant analysis(BSA) quantitative trait loci(QTL)
下载PDF
Assessment of molecular markers and marker-assisted selection for drought tolerance in barley(Hordeum vulgare L.)
9
作者 Akmaral Baidyussen Gulmira Khassanova +11 位作者 Maral Utebayev Satyvaldy Jatayev Rystay Kushanova Sholpan Khalbayeva Aigul Amangeldiyeva Raushan Yerzhebayeva KulpashBulatova Carly Schramm Peter Anderson Colin L.D.Jenkins Kathleen LSoole Yuri Shavrukov 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期20-38,共19页
This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candi... This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candidate genes and suggested markers was assessed in the barley genome cv.Morex.Six common strategies are described for molecular marker development,candidate gene identification and verification,and their possible applications in MAS to improve the grain yield and yield components in barley under drought stress.These strategies are based on the following five principles:(1)Molecular markers are designated as genomic‘tags’,and their‘prediction’is strongly dependent on their distance from a candidate gene on genetic or physical maps;(2)plants react differently under favourable and stressful conditions or depending on their stage of development;(3)each candidate gene must be verified by confirming its expression in the relevant conditions,e.g.,drought;(4)the molecular marker identified must be validated for MAS for tolerance to drought stress and improved grain yield;and(5)the small number of molecular markers realized for MAS in breeding,from among the many studies targeting candidate genes,can be explained by the complex nature of drought stress,and multiple stress-responsive genes in each barley genotype that are expressed differentially depending on many other factors. 展开更多
关键词 BARLEY candidate genes drought tolerance gene verification via expression grain yield marker-assisted selection(MAS) molecular markers quantitative trait loci(QTLs) strategy for MAS
下载PDF
Identifying genetic susceptibility to Aspergillus fumigatus infection using collaborative cross mice and RNA-Seq approach
10
作者 Roa'a H.S.Yosief Iqbal M.Lone +3 位作者 Aharon Nachshon Heinz Himmelbauer Irit Gat-Viks Fuad A.Iraqi 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第1期36-47,共12页
Background:Aspergillus fumigatus(Af)is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic back-ground.The aim of this study was to search for candidat... Background:Aspergillus fumigatus(Af)is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic back-ground.The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus(Af)using an RNAseq approach in CC lines and hepatic gene expression.Methods:We studied 31 male mice from 25 CC lines at 8 weeks old;the mice were infected with Af.Liver tissues were extracted from these mice 5 days post-infection,and next-generation RNA-sequencing(RNAseq)was performed.The GENE-E analysis platform was used to generate a clustered heat map matrix.Results:Significant variation in body weight changes between CC lines was ob-served.Hepatic gene expression revealed 12 top prioritized candidate genes differ-entially expressed in resistant versus susceptible mice based on body weight changes.Interestingly,three candidate genes are located within genomic intervals of the previ-ously mapped quantitative trait loci(QTL),including Gm16270 and Stox1 on chromo-some 10 and Gm11033 on chromosome 8.Conclusions:Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af.As a next step,eQTL analysis will be performed for our RNA-Seq data.Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis. 展开更多
关键词 aspergillus fumigatus infection collaborative cross(CC)mice gene expression profile gene-network host susceptibility quantitative trait loci(QTL)mapping RNA-SEQ
下载PDF
Genetic bases of source-,sink-,and yield-related traits revealed by genome-wide association study in Xian rice 被引量:10
11
作者 Yun Wang Yunlong Pang +4 位作者 Kai Chen Laiyuan Zhai Congcong Shen Shu Wang Jianlong Xu 《The Crop Journal》 SCIE CAS CSCD 2020年第1期119-131,共13页
The source-sink relationship determines the ultimate grain yield.We investigated the genetic basis of the relationship between source and sink and yield potential in rice.In two environments,we identified quantitative... The source-sink relationship determines the ultimate grain yield.We investigated the genetic basis of the relationship between source and sink and yield potential in rice.In two environments,we identified quantitative trait loci(QTL)associated with sink capacity(total spikelet number per panicle and thousand-grain weight),source leaf(flag leaf length,flag leaf width and flag leaf area),source-sink relationship(total spikelet number to flag leaf area ratio)and yield-related traits(filled grain number per panicle,panicle number per plant,grain yield per plant,biomass per plant,and harvest index)by genome-wide association analysis using 272 Xian(indica)accessions.The panel showed substantial variation for all traits in the two environments and revealed complex phenotypic correlations.A total of 70 QTL influencing the 11 traits were identified using 469,377 high-quality SNP markers.Five QTL were detected consistently in four chromosomal regions in both environments.Five QTL clusters simultaneously affected source,sink,source–sink relationship,and grain yield traits,probably explaining the genetic basis of significant correlations of grain yield with source and sink traits.We selected 24 candidate genes in the four consistent QTL regions by identifying linkage disequilibrium(LD)blocks associated with significant SNPs and performing haplotype analysis.The genes included one cloned gene(NOG1)and three newly identified QTL(qHI6,qTGW7,and qFLA8).These results provide a theoretical basis for high-yield rice breeding by increasing and balancing source–sink relationships using marker-assisted selection. 展开更多
关键词 RICE GWAS Source–sink relationship quantitative trait loci/locus(QTL) Candidate gene
下载PDF
Identification of candidate genes for drought stress tolerance in rice by the integration of a genetic (QTL) map with the rice genome physical map 被引量:6
12
作者 汪旭升 朱军 +1 位作者 MANSUETO Locedie BRUSKIEWICH Richard 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期382-388,共7页
Genetic improvement for drought stress tolerance in rice involves the quantitative nature of the trait, which reflects the additive effects of several genetic loci throughout the genome. Yield components and related t... Genetic improvement for drought stress tolerance in rice involves the quantitative nature of the trait, which reflects the additive effects of several genetic loci throughout the genome. Yield components and related traits under stressed and well-water conditions were assayed in mapping populations derived from crosses of Azucena×IR64 and Azucena×Bala. To find the candidate rice genes underlying Quantitative Trait Loci (QTL) in these populations, we conducted in silico analysis of a candidate region flanked by the genetic markers RM212 and RM319 on chromosome 1, proximal to the semi-dwarf (sd1) locus. A total of 175 annotated genes were identified from this region. These included 48 genes annotated by functional homology to known genes, 23 pseudogenes, 24 ab initio predicted genes supported by an alignment match to an EST (Expressed sequence tag) of unknown function, and 80 hypothetical genes predicted solely by ab initio means. Among these, 16 candidate genes could potentially be involved in drought stress response. 展开更多
关键词 Rice genome sequence Candidate genes Drought stress quantitative trait loci (QTL)
下载PDF
Molecular and Physical Mapping of Powdery Mildew Resistance Genes and QTLs in Wheat: A Review 被引量:7
13
作者 Jun GUO Cheng LIU +8 位作者 Shengnan ZHAI Haosheng LI Aifeng LIU Dungong CHENG Ran HAN Jianjun LIU Lingrang KONG Zhendong ZHAO Jianmin SONG 《Agricultural Science & Technology》 CAS 2017年第6期965-970,共6页
Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant find... Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major re- sistance gene mapping studies and 25 quantitative trait loci (QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance (APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromo- somes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes, suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an impor- tant role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its rela- tives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/ SY2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resis- tance genes/QTLs more efficiently by marker-assisted selection. 展开更多
关键词 Wheat powdery mildew Molecular mapping Major Pm resistance genes quantitative trait loci (QTL) Marker-assisted selection
下载PDF
Comparative mapping of QTLs for Al tolerance in rice and identification of positional Al-induced genes 被引量:7
14
作者 毛传澡 杨玲 +4 位作者 郑炳松 吴运荣 刘非燕 易可可 吴平 《Journal of Zhejiang University Science》 EI CSCD 2004年第6期634-643,共10页
Aluminum (Al) toxicity is the major factor limiting crop productivity in acid soils. In this study, a recombinant inbreed line (RIL) population derived from a cross between an Al sensitive lowland indica rice variety... Aluminum (Al) toxicity is the major factor limiting crop productivity in acid soils. In this study, a recombinant inbreed line (RIL) population derived from a cross between an Al sensitive lowland indica rice variety IR1552 and an Al tolerant upland japonica rice variety Azucena, was used for mapping quantitative trait loci (QTLs) for Al tolerance. Three QTLs for relative root length (RRL) were detected on chromosome 1, 9, 12, respectively, and 1 QTL for root length under Al stress is identical on chromosome 1 after one week and two weeks stress. Comparison of QTLs on chromosome 1 from different studies indicated an identical interval between C86 and RZ801 with gene(s) for Al tolerance. This interval provides an important start point for isolating genes responsible for Al tolerance and understanding the genetic nature of Al tolerance in rice. Four Al induced ESTs located in this interval were screened by reverse Northern analysis and confirmed by Northern analysis. They would be candidate genes for the QTL. 展开更多
关键词 Aluminum tolerance quantitative trait loci (QTL) Expressed sequence tag (EST) Gene Rice (Oryza sativa L.)
下载PDF
Gene Mapping of Brachytic Stem and Its Effect on Main Agronomic Traits in Soybean 被引量:1
15
作者 CUI Shi-you MENG Qing-chang HUANG Fang ZHAO Tuan-jie GAI Jun-yi YU De-yue 《Agricultural Sciences in China》 CAS CSCD 2005年第10期728-732,共5页
Brachytic stem is a major trait in plant type .of soybean and its yield potential may be higher under high population when compared with normal stem. In the present investigation, 152 recombinant inbred line (RIL) f... Brachytic stem is a major trait in plant type .of soybean and its yield potential may be higher under high population when compared with normal stem. In the present investigation, 152 recombinant inbred line (RIL) families derived from the cross of Bogao (normal stem) and Nannong 94-156 (brachytic stem) were used to map genes and QTLs of three plant type traits and to identify the effects of brachytic stem on agronomic traits such as yield. The primary results indicated that brachytic stem (sb) and determinate growth habit (drl) were mapped on linkage groups B2 and L, three major QTLs related to plant height were detected and mapped on linkage group L near drl, another minor QTL was mapped near sb on linkage group B2-1. Lines with brachytic stem had shorter plant height, lower biomass, yield, harvest index and pods per plant, and essentially no differences in days to maturity and 100-seed weight when compared with normal stem lines. It was obvious that the effect of brachytic stem on yield was due to the decreased height, biomass and harvest index. 展开更多
关键词 Brachytic stem Gene mapping quantitative trait loci (QTL) Agronomic trait SOYBEAN
下载PDF
敲除Bsr-d1和Pi21基因改良优良食味粳稻南粳9108的稻瘟病抗性研究
16
作者 张亿 朱虹 +7 位作者 李明友 王广达 许志文 姜晓红 翟鹏飞 冯志明 陈宗祥 左示敏 《扬州大学学报(农业与生命科学版)》 CAS 北大核心 2024年第5期1-11,共11页
稻瘟病是由稻瘟病真菌引起的水稻重要病害,严重影响稻米的产量与品质,培育广谱持久抗性水稻品种是控制稻瘟病最经济有效的措施。利用CRISPR/Cas9技术对江苏主推优良食味粳稻品种南粳9108中2个抗稻瘟病数量性状基因Bsr-d1和Pi21进行敲除... 稻瘟病是由稻瘟病真菌引起的水稻重要病害,严重影响稻米的产量与品质,培育广谱持久抗性水稻品种是控制稻瘟病最经济有效的措施。利用CRISPR/Cas9技术对江苏主推优良食味粳稻品种南粳9108中2个抗稻瘟病数量性状基因Bsr-d1和Pi21进行敲除研究,获得各基因的纯合敲除系,并通过杂交聚合获得携带双基因敲除系。苗期多菌株接种及叶片划伤接种结果表明,与野生型相比,Bsr-d1和Pi21各单基因敲除系均显著增强稻瘟病抗性;双基因聚合系的抗性水平总体强于各单基因系。RT-qPCR结果显示,稻瘟病菌接种后,多个防御相关基因在敲除系中表达水平显著高于野生型。与野生型相比,Bsr-d1和Pi21编辑系在主要农艺性状、经济和品质相关性状上无显著差异。这一研究创建的抗稻瘟病育种中间材料可进一步用于广谱持久抗稻瘟病优良食味粳稻新品种育种。 展开更多
关键词 水稻 稻瘟病 CRISPR/Cas9 数量性状基因 农艺性状
下载PDF
基于全基因组关联分析的水稻穗长QTL定位及其候选基因分析
17
作者 祝小雅 闫蕴韬 +3 位作者 桂金鑫 石居斌 张海清 贺记外 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期1-9,共9页
分别于2021年和2022年在湖南长沙种植254份水稻3K种质资源,在成熟期测定各种质的穗长。结合种质基因型进行全基因组关联分析,共检测到3个穗长QTL,分布于水稻第1、5、6号染色体,分别命名为qPL-1、qPL-5和qPL-6,相对贡献率为9.06%~28.27%... 分别于2021年和2022年在湖南长沙种植254份水稻3K种质资源,在成熟期测定各种质的穗长。结合种质基因型进行全基因组关联分析,共检测到3个穗长QTL,分布于水稻第1、5、6号染色体,分别命名为qPL-1、qPL-5和qPL-6,相对贡献率为9.06%~28.27%;结合QTL区间内基因功能注释和基因不同单倍型的穗长差异显著性分析结果,最终获得qPL-1、qPL-5和qPL-6的候选基因,其中qPL-6与sped1-D共定位,Os01g0715600、Os05g0132700为调控穗长的新候选基因;对Os01g0715600、Os05g0132700和Os06g0597500的单倍型进行聚合分析,发现这3个基因存在累加效应。 展开更多
关键词 水稻 穗长 数量性状位点 候选基因 单倍型 基因聚合
下载PDF
Relationship Between Coleoptile Length and Drought Resistance and Their QTL Mapping in Rice 被引量:4
18
作者 HU Song-ping YANG Hua +6 位作者 ZOU Gui-hua LIU Hong-yan LIU Guo-lan MEI Han-wei CAI Run LI Ming-shou LUO Li-jun 《Rice science》 SCIE 2007年第1期13-20,共8页
By using a set of recombinant inbred line (RIL) population involving in 195 lines derived from a cross of Zhenshan 97B (lowland variety) and IRAT109 (upland variety), the correlation analysis between coleoptile ... By using a set of recombinant inbred line (RIL) population involving in 195 lines derived from a cross of Zhenshan 97B (lowland variety) and IRAT109 (upland variety), the correlation analysis between coleoptile length (CL) and drought resistance index (DRI) and their QTL identification were conducted. There existed a significantly positive relationship between CL and DRI with the correlation coefficient of 0.2206** under water stress conditions. Under normal and water stress conditions, a total of eleven and four QTLs for CL and DRI, respectively, were detected on chromosomes 1,2, 4, 5, 6, 7, 9, 11 and 12 by using a linkage map including 213 SSR markers, which explained 4.84% to 22.65% of phenotypic variance. Chromosomes 1 and 9 possessing the QTLs for DRI harbored simultaneously QTLs for CL, and qCL9 shared the same chromosome location with qDR19 (RM160-RM215). Comparing the QTLs related to drought resistance in other studies, QTLs for CL and DRI were located in the same or adjacent marker interval as those related to root traits, such as number, dry weight, depth, and length of root. Moreover, sixteen and three pairs of epistatic loci for CL and DRI were found, which accounted for 56.17% and 11.93% of the total variation in CL and DRI, respectively. 展开更多
关键词 recombinant inbred lines coleoptile length drought resistance index quantitative trait loci RICE
下载PDF
Genetic dissection of rice appearance quality and cooked rice elongation by genome-wide association study 被引量:6
19
作者 Xianjin Qiu Jing Yang +6 位作者 Fan Zhang Yanan Niu Xiuqing Zhao Congcong Shen Kai Chen Sheng Teng Jianlong Xu 《The Crop Journal》 SCIE CSCD 2021年第6期1470-1480,共11页
Appearance and cooked rice elongation are key quality traits of rice. Although some QTL for these traits have been identified, understanding of the genetic relationship between them remains limited. In the present stu... Appearance and cooked rice elongation are key quality traits of rice. Although some QTL for these traits have been identified, understanding of the genetic relationship between them remains limited. In the present study, large phenotypic variation was observed in 760 accessions from the 3 K Rice Genomes Project for both appearance quality and cooked rice elongation. Most component traits of appearance quality and cooked rice elongation showed significant pairwise correlations, but a low correlation was found between appearance quality and cooked rice elongation. A genome-wide association study identified 74 QTL distributed on all 12 chromosomes for grain length, grain width, length to width ratio, degree of endosperm with chalkiness, rice elongation difference, and elongation index. Thirteen regions containing QTL stably expressed in multiple environments and/or exerting pleiotropic effects on multiple traits were detected. By gene-based association analysis and haplotype analysis, 46 candidate genes, including five cloned genes, and 49 favorable alleles were identified for these 13 QTL. The effect of the candidate gene Wx on rice elongation difference was validated by a transgenic strategy. These results shed light on the genetic bases of appearance quality and cooked rice elongation and provide gene resources for improving rice quality by molecular breeding. 展开更多
关键词 Appearance quality Cooked rice elongation Genome-wide association study Candidate gene Favorable allele quantitative trait locus/loci(QTL)
下载PDF
Identification of QTL for adult-plant resistance to powdery mildew in Chinese wheat landrace Pingyuan 50 被引量:2
20
作者 Muhammad Azeem Asad Bin Bai +4 位作者 Caixia Lan Jun Yan Xianchun Xia Yong Zhang Zhonghu He 《The Crop Journal》 SCIE CAS 2014年第5期308-314,共7页
Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the major wheat diseases worldwide. The Chinese wheat landrace Pingyuan 50 has shown adult-plant resistance(APR)to powdery mildew in the field for ov... Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the major wheat diseases worldwide. The Chinese wheat landrace Pingyuan 50 has shown adult-plant resistance(APR)to powdery mildew in the field for over 60 years. To dissect the genetic basis of APR to powdery mildew in this cultivar, a mapping population of 137 double haploid(DH) lines derived from Pingyuan 50/Mingxian 169 was evaluated in replicated field trials for two years in Beijing(2009–2010 and 2010–2011) and one year in Anyang(2009–2010). A total of 540 polymorphic SSR markers were genotyped on the entire population for construction of a linkage map and QTL analysis. Three QTL were mapped on chromosomes 2BS(QPm.caas-2BS.2), 3BS(QPm.caas-3BS),and 5AL(QPm.caas-5AL) with the resistance alleles contributed by Pingyuan 50 explaining 5.3%,10.2%, and 9.1% of the phenotypic variances, respectively, and one QTL on chromosome 3BL(QPm.caas-3BL) derived from Mingxian 169 accounting for 18.1% of the phenotypic variance.QPm.caas-3BS, QPm.caas-3BL, and QPm.caas-5AL appear to be new powdery mildew APR loci.QPm.caas-2BS.2 and QPm.caas-5AL are possibly pleiotropic or closely linked resistance loci to stripe rust resistance QTL. Pingyuan 50 could be a potential genetic resource to facilitate breeding for improved APR to both powdery mildew and stripe rust. 展开更多
关键词 TRITICUM AESTIVUM L Blumeria graminis f.sp.tritici Disease resistance quantitative trait loci
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部