The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate str...The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water.展开更多
Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection ...Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.展开更多
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close rel...Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.展开更多
Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type Ⅳ fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affe...Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type Ⅳ fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affected zone (HAZ). Because boron is considered to suppress the coarsening of grain boundary precipitates and growth of creep voids, we have investigated the effect of boron addition on the creep properties of 9Cr steel weldments. Four kinds of 9Cr3WSCoVNb steels with boron content varying from 4.7×10-5 to 1.8×10-4 and with nitrogen as low as 2.0×10-5 were prepared. The steel plates were welded by gas tungsten arc welding and crept at 923K. It was found that the microstructures of HAZ were quite different from those of conventional high Cr steels such as P91 and P92, namely the fine-grained HAZ did not exist in the present steel weldments. Boron addition also has the effect to suppress coarsening of grain boundary carbides in HAZ during creep. As a result of these phenomena, the welded joints of present steels showed no Type Ⅳ fractures and much better creep lives than those of conventional steels.展开更多
A new kind of bittern-resisting cement (BRC) was introduced. This material is based on the ternary cementitious system of clinker containing C4A3 S phase, high-activity ground granulated blast-furnace slag (GGBFS)...A new kind of bittern-resisting cement (BRC) was introduced. This material is based on the ternary cementitious system of clinker containing C4A3 S phase, high-activity ground granulated blast-furnace slag (GGBFS) and fly ash (FA). The hydration process and the hydrated products of BRC were studied by means of XRD, TG-DTA and SEM, and the resistance to chemical attack of BRC in high-bittern environment was also examined. The corrosion experiment in seven kinds of brines proved that BRC exhibits an excellent resistance to chemical attack of bittern. The corrosion resistance factors were calculated and all of them were greater than 0.96. It showed that BRC totally controls the cement-based material corrosion in brines from four aspects: (1) making full use of the dominant complementation effect of mineral materials; (2) diminishing the hydrated products easy to be attacked; (3) improving the microstructure of hardened cement mortar; (4) degrading the chemical attack of bittern.展开更多
Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current i_(corr), and characteristic potential of pittin...Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current i_(corr), and characteristic potential of pitting E_b. The results indicate that the rare earths have effect on corrosion resisting properties of carbon-manganese clean steel, and the optimum contents of La is about 0.011% (mass fraction) and Ce about 0.014% (mass fraction) respectively. The change of corrosion resistance is related to the action of rare earths on microstructure and effect on surface state of samples in the process of polarization.展开更多
This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation met...This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing(CCB) and cylindrical friction damper(CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses(decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.展开更多
Based on performance-based seismic engineering, this paper proposes an optimal seismic retrofit model for steel moment resisting frames(SMRFs) to generate a retrofit scheme at minimal cost. To satisfy the acceptance...Based on performance-based seismic engineering, this paper proposes an optimal seismic retrofit model for steel moment resisting frames(SMRFs) to generate a retrofit scheme at minimal cost. To satisfy the acceptance criteria for the Basic Safety Objective(BSO) specified in FEMA 356, the minimum number of upgraded connections and their locations in an SMRF with brittle connections are determined by evolutionary computation. The performance of the proposed optimal retrofitting model is evaluated on the basis of the energy dissipation capacities, peak roof drift ratios, and maximum interstory drift ratios of structures before and after retrofitting. In addition, a retrofit efficiency index, which is defined as the ratio of the increment in seismic performance to the required retrofitting cost, is proposed to examine the efficiencies of the retrofit schemes derived from the model. The optimal seismic retrofit model is applied to the SAC benchmark examples for threestory and nine-story SMRFs with brittle connections. Using the retrofit efficiency index proposed in this study, the optimal retrofit schemes obtained from the model are found to be efficient for both examples in terms of energy dissipation capacity, roof drift ratio, and maximum inter-story drift ratio.展开更多
Snow resisting capacity of vegetation is important for secondary distribution of water resources in seasonal snow areas of grassland because it affects the regeneration,growth and nutrient circulation of vegetation in...Snow resisting capacity of vegetation is important for secondary distribution of water resources in seasonal snow areas of grassland because it affects the regeneration,growth and nutrient circulation of vegetation in grassland.This study investigated vegetation characteristics(canopy height,canopy length and crown width)of Caragana microphylla Lam.(shrub)and Achnatherum splendens(Trin.)Nevski.(herb),and snow morphologies(snow depth,snow width and snow braid length)in a typical steppe region of Inner Mongolia,China in 2017.And the influence of vegetation characteristic on snow resisting capacity(the indices of bottom area of snow and snow volume reflect snow resisting capacity)was analyzed.The results showed that snow morphology depends on vegetation characteristics of shrub and herb.The canopy height was found to have the greatest influence on snow depth and the crown width had the greatest influence on snow width.The canopy length was found to have little influence on morphological parameters of snow.When the windward areas of C.microphylla and A.splendens were within the ranges of 0.0-0.5 m2 and 0.0-8.0 m2,respectively,the variation of snow cover was large;however,beyond these areas,the variation of snow cover became gradually stable.The potential area of snow retardation for a single plant was 1.5-2.5 m2 and the amount of snow resistance was 0.15-0.20 m3.The bottom area of snow and snow volume(i.e.,snow resisting capacity)of clumped C.microphylla and A.splendens was found to be 4 and 25 times that of individual plant,respectively.The results could provide a theoretical basis both for the estimation of snow cover and the establishment of a plant-based technical system for the control of windblown snow in the typical steppe region of Inner Mongolia.展开更多
Bearing the large moment that is generated by the wind load that acts on the upper structure of offshore wind turbines is an important feature of their foundations that is different from other offshore structures.A co...Bearing the large moment that is generated by the wind load that acts on the upper structure of offshore wind turbines is an important feature of their foundations that is different from other offshore structures.A composite bucket shallow foundation(CBSF)has been proposed by Tianjin University to address the soft geological conditions in the offshore regions of China for wind turbines.The CBSF is a new type of foundation and is effective against large moments.The soil deformation test of a CBSF and the numerical simulation study under the same working conditions are carried out to determine the failure mechanism of a CBSF under moment loading.The resisting soil compression rateηm is defined as a new empirical parameter that indicates the ability of the soil inside the bucket to resist moment loading.The upper limit of the resisting moment bearing capacity of the bucket foundation is derived through the upper bound theorem of classical plasticity theory based on the failure mechanism.The calculation method is validated by tests of bucket models with different height-diameter ratios in sand under moment loading.展开更多
The hydrating products and microstructure of permeability resisting portland cement have been studied by x-ray diffraction (XRD) and electron microscopy (EM). The hydrates such as calcium silicates hydrate and calcium...The hydrating products and microstructure of permeability resisting portland cement have been studied by x-ray diffraction (XRD) and electron microscopy (EM). The hydrates such as calcium silicates hydrate and calcium sulphaluminate hydrate, ettringite crystal of needles can be observed under the EM, most of which were filled into pores of hardened cement paste.展开更多
The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in...The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in a nutshell.The stability of FW patterns on end head is very sensitive to changing of pattern parameter.Consequently,its FW pattern was based on geodesic track.The FW angles and on equators depend on the dimension of end part and the condition of geodesic FW.Generally speaking, the polar holes of rocket engine shell are disproportional.Therefore,the FW angles of the shell column are changeable.The feasi- bility of nongeodesic FW of the shell column was discussed in this paper.Furthermore,it expounded the indispensable condition be- tween the length of shell column and the FW friction coefficient.At the same time,the general mathematic models of the movement control of nongeodesic FW were deduced.展开更多
Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following ...Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.展开更多
The corrosion resistance of gauzes made of various materials, including Al-Mg-RE alloy with various RE contents, Al-Mg alloy, low-carbon steel and plastic, was evaluated and compared. The experimental methods used inc...The corrosion resistance of gauzes made of various materials, including Al-Mg-RE alloy with various RE contents, Al-Mg alloy, low-carbon steel and plastic, was evaluated and compared. The experimental methods used include immersion method, salt spray test, weight loss test, electrode potential analysis and metallographic method, etc. The corrosion resistance of Al-Mg-RE alloy gauzes in mediums such as running water, natural seawater, NaCl solution with various concentrations, 0.05 mol.L-1 Na2SO4 solution, and 10% H2SO4 solution etc., is superior to those of Al-Mg alloy gauzes made in either China or U.S.A., and much superior to those of gauzes made of low-carbon steel and plastic. The electrode potentials of the Al-Mg-RE alloy in both the natural seawater and 0.05 mol.L-1 Na2SO4 solution increase linearly with increasing RE content in the alloy. The microstructure in the Al-Mg-RE alloy has been refined and the shape of compounds has been obviously changed comparing with those in Al-Mg alloy without RE elements. AU these microstructural changes are favorable to the corrosion resistance of the alloy. The Al-Mg-RE alloy gauze may be used as a substitute for those made df Al-Mg alloy, low-carbon steel and plastic in moisture marine or industrial environment for better serviceability.展开更多
This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to th...This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC'09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic resPonses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the D~ factor, which shows a mere 30% increase. Based on the observed trends, perioddependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.展开更多
The present status of NRIM Creep Data Sheet Project and the recent activities of long-term creep and rupture studies on heat resisting steels are described. The project has been continued to produce long-term data suc...The present status of NRIM Creep Data Sheet Project and the recent activities of long-term creep and rupture studies on heat resisting steels are described. The project has been continued to produce long-term data such as 100 000h-creep rupture strength for 47 kinds of principal heat resisting steels and alloys, including welded joints. The long-term creep deformation behavior and microstructural evolution during creep have been shown to be complicated.展开更多
To improve the oxidation resistance property of iron fibers, a SiO2 coated iron fiber was prepared by sol-gel method, and its microstructure, element and phase composition, antioxidation property, and crystallization ...To improve the oxidation resistance property of iron fibers, a SiO2 coated iron fiber was prepared by sol-gel method, and its microstructure, element and phase composition, antioxidation property, and crystallization were characterized by scanning electron microscopy, thermal gravimetric analysis, X-ray diffraction and 3% CuSO4 solution dripping. It was found that the surface of the iron fiber can be fully covered with SiO2 by using Sol-Gel method. Our results also indicated that the time of iron begin to be corrupted in 3% CuSO4 solution drip increased from 30 s to 240 s, and the temperature increased from 200?C to 310?C. In addition, the oxidation and antioxidation mechanisms of the SiO2 coated iron fiber have also been discussed in this work.展开更多
Breast cancer is the leading cause of cancer-related deaths in women worldwide,with Hormone Receptor(HR)+being the predominant subtype.Tamoxifen(TAM)serves as the primary treatment for HR+breast cancer.However,drug re...Breast cancer is the leading cause of cancer-related deaths in women worldwide,with Hormone Receptor(HR)+being the predominant subtype.Tamoxifen(TAM)serves as the primary treatment for HR+breast cancer.However,drug resistance often leads to recurrence,underscoring the need to develop new therapies to enhance patient quality of life and reduce recurrence rates.Artemisinin(ART)has demonstrated efficacy in inhibiting the growth of drug-resistant cells,positioning art as a viable option for counteracting endocrine resistance.This study explored the interaction between artemisinin and tamoxifen through a combined approach of bioinformatics analysis and experimental validation.Five characterized genes(ar,cdkn1a,erbb2,esr1,hsp90aa1)and seven drug-disease crossover genes(cyp2e1,rorc,mapk10,glp1r,egfr,pgr,mgll)were identified using WGCNA crossover analysis.Subsequent functional enrichment analyses were conducted.Our findings confirm a significant correlation between key cluster gene expression and immune cell infiltration in tamoxifen-resistant and-sensitized patients.scRNA-seq analysis revealed high expression of key cluster genes in epithelial cells,suggesting artemisinin’s specific impact on tumor cells in estrogen receptor(ER)-positive BC tissues.Molecular target docking and in vitro experiments with artemisinin on LCC9 cells demonstrated a reversal effect in reducing migratory and drug resistance of drug-resistant cells by modulating relevant drug resistance genes.These results indicate that artemisinin could potentially reverse tamoxifen resistance in ER-positive breast cancer.展开更多
A coating with high hardness, wear and oxidation resistance was prepared by electric arc spray. The hardness, bonding strength, abrasive wear and values of porosity and oxidation resistance of the coating were investi...A coating with high hardness, wear and oxidation resistance was prepared by electric arc spray. The hardness, bonding strength, abrasive wear and values of porosity and oxidation resistance of the coating were investigated. The microstructures and function of Cr3C2 of the coating were analyzed. The results showed surface Rockness Hardness HR30 reached 72.5 and average bond strength reached 49.1Mpa. Also porosity value was less than 2%. In addition, it was found from the comparison between the coating and 45CT coating that, oxidation resistance of the coating was less than that of 45CT, but the abrasive wear of the coating was obvious better than that of 45CT.展开更多
基金Project supported by the National Natural Science Foundation of China (Grants No. 12075201)the Science and Technology Planning Project of Jiangsu Province, China (Grant No. BK20201428)+1 种基金the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21 3193)the Special Program for Applied Research on Supercomputation of the NSFC–Guangdong Joint Fund (the second phase)。
文摘The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water.
基金supported by a grant of the Deutsche Forschungsgemeinschaft(DFGCRC1177 and joint DFG/ANR grant)(to CB)a fellowship of the Deutscher Akademischer Austauschdienst(DAAD)(to TNMP)。
文摘Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.
基金support from Region Stockholm,ALF-project(FoUI-960041)Open Access funding is provided by Karolinska Institute(both to IM)。
文摘Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
文摘Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type Ⅳ fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affected zone (HAZ). Because boron is considered to suppress the coarsening of grain boundary precipitates and growth of creep voids, we have investigated the effect of boron addition on the creep properties of 9Cr steel weldments. Four kinds of 9Cr3WSCoVNb steels with boron content varying from 4.7×10-5 to 1.8×10-4 and with nitrogen as low as 2.0×10-5 were prepared. The steel plates were welded by gas tungsten arc welding and crept at 923K. It was found that the microstructures of HAZ were quite different from those of conventional high Cr steels such as P91 and P92, namely the fine-grained HAZ did not exist in the present steel weldments. Boron addition also has the effect to suppress coarsening of grain boundary carbides in HAZ during creep. As a result of these phenomena, the welded joints of present steels showed no Type Ⅳ fractures and much better creep lives than those of conventional steels.
基金This work was financially supported by the Key Scientific and Technological Project of Qinghai Province (No.2002-G-103)
文摘A new kind of bittern-resisting cement (BRC) was introduced. This material is based on the ternary cementitious system of clinker containing C4A3 S phase, high-activity ground granulated blast-furnace slag (GGBFS) and fly ash (FA). The hydration process and the hydrated products of BRC were studied by means of XRD, TG-DTA and SEM, and the resistance to chemical attack of BRC in high-bittern environment was also examined. The corrosion experiment in seven kinds of brines proved that BRC exhibits an excellent resistance to chemical attack of bittern. The corrosion resistance factors were calculated and all of them were greater than 0.96. It showed that BRC totally controls the cement-based material corrosion in brines from four aspects: (1) making full use of the dominant complementation effect of mineral materials; (2) diminishing the hydrated products easy to be attacked; (3) improving the microstructure of hardened cement mortar; (4) degrading the chemical attack of bittern.
文摘Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current i_(corr), and characteristic potential of pitting E_b. The results indicate that the rare earths have effect on corrosion resisting properties of carbon-manganese clean steel, and the optimum contents of La is about 0.011% (mass fraction) and Ce about 0.014% (mass fraction) respectively. The change of corrosion resistance is related to the action of rare earths on microstructure and effect on surface state of samples in the process of polarization.
文摘This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing(CCB) and cylindrical friction damper(CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses(decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.
基金National Research Foundation of Korea(NRF)under Grant No.2016R1A6A3A11932881
文摘Based on performance-based seismic engineering, this paper proposes an optimal seismic retrofit model for steel moment resisting frames(SMRFs) to generate a retrofit scheme at minimal cost. To satisfy the acceptance criteria for the Basic Safety Objective(BSO) specified in FEMA 356, the minimum number of upgraded connections and their locations in an SMRF with brittle connections are determined by evolutionary computation. The performance of the proposed optimal retrofitting model is evaluated on the basis of the energy dissipation capacities, peak roof drift ratios, and maximum interstory drift ratios of structures before and after retrofitting. In addition, a retrofit efficiency index, which is defined as the ratio of the increment in seismic performance to the required retrofitting cost, is proposed to examine the efficiencies of the retrofit schemes derived from the model. The optimal seismic retrofit model is applied to the SAC benchmark examples for threestory and nine-story SMRFs with brittle connections. Using the retrofit efficiency index proposed in this study, the optimal retrofit schemes obtained from the model are found to be efficient for both examples in terms of energy dissipation capacity, roof drift ratio, and maximum inter-story drift ratio.
基金This work was supported by the National Natural Science Foundation of China(41361012)the Postgraduate Research and Innovation Funding Project of Inner Mongolia Autonomous Region(B2018111951).
文摘Snow resisting capacity of vegetation is important for secondary distribution of water resources in seasonal snow areas of grassland because it affects the regeneration,growth and nutrient circulation of vegetation in grassland.This study investigated vegetation characteristics(canopy height,canopy length and crown width)of Caragana microphylla Lam.(shrub)and Achnatherum splendens(Trin.)Nevski.(herb),and snow morphologies(snow depth,snow width and snow braid length)in a typical steppe region of Inner Mongolia,China in 2017.And the influence of vegetation characteristic on snow resisting capacity(the indices of bottom area of snow and snow volume reflect snow resisting capacity)was analyzed.The results showed that snow morphology depends on vegetation characteristics of shrub and herb.The canopy height was found to have the greatest influence on snow depth and the crown width had the greatest influence on snow width.The canopy length was found to have little influence on morphological parameters of snow.When the windward areas of C.microphylla and A.splendens were within the ranges of 0.0-0.5 m2 and 0.0-8.0 m2,respectively,the variation of snow cover was large;however,beyond these areas,the variation of snow cover became gradually stable.The potential area of snow retardation for a single plant was 1.5-2.5 m2 and the amount of snow resistance was 0.15-0.20 m3.The bottom area of snow and snow volume(i.e.,snow resisting capacity)of clumped C.microphylla and A.splendens was found to be 4 and 25 times that of individual plant,respectively.The results could provide a theoretical basis both for the estimation of snow cover and the establishment of a plant-based technical system for the control of windblown snow in the typical steppe region of Inner Mongolia.
基金supported by the National Natural Science Foundation of China(Grant Nos.51709199 and 51322904).
文摘Bearing the large moment that is generated by the wind load that acts on the upper structure of offshore wind turbines is an important feature of their foundations that is different from other offshore structures.A composite bucket shallow foundation(CBSF)has been proposed by Tianjin University to address the soft geological conditions in the offshore regions of China for wind turbines.The CBSF is a new type of foundation and is effective against large moments.The soil deformation test of a CBSF and the numerical simulation study under the same working conditions are carried out to determine the failure mechanism of a CBSF under moment loading.The resisting soil compression rateηm is defined as a new empirical parameter that indicates the ability of the soil inside the bucket to resist moment loading.The upper limit of the resisting moment bearing capacity of the bucket foundation is derived through the upper bound theorem of classical plasticity theory based on the failure mechanism.The calculation method is validated by tests of bucket models with different height-diameter ratios in sand under moment loading.
文摘The hydrating products and microstructure of permeability resisting portland cement have been studied by x-ray diffraction (XRD) and electron microscopy (EM). The hydrates such as calcium silicates hydrate and calcium sulphaluminate hydrate, ettringite crystal of needles can be observed under the EM, most of which were filled into pores of hardened cement paste.
文摘The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in a nutshell.The stability of FW patterns on end head is very sensitive to changing of pattern parameter.Consequently,its FW pattern was based on geodesic track.The FW angles and on equators depend on the dimension of end part and the condition of geodesic FW.Generally speaking, the polar holes of rocket engine shell are disproportional.Therefore,the FW angles of the shell column are changeable.The feasi- bility of nongeodesic FW of the shell column was discussed in this paper.Furthermore,it expounded the indispensable condition be- tween the length of shell column and the FW friction coefficient.At the same time,the general mathematic models of the movement control of nongeodesic FW were deduced.
基金suppoited by an Alexander Graliam Bell Canada Graduate Scholarship-Doctoralsupported by an Ontario Graduate Scholarshipsupported by the Canada Research Chairs programme。
文摘Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.
文摘The corrosion resistance of gauzes made of various materials, including Al-Mg-RE alloy with various RE contents, Al-Mg alloy, low-carbon steel and plastic, was evaluated and compared. The experimental methods used include immersion method, salt spray test, weight loss test, electrode potential analysis and metallographic method, etc. The corrosion resistance of Al-Mg-RE alloy gauzes in mediums such as running water, natural seawater, NaCl solution with various concentrations, 0.05 mol.L-1 Na2SO4 solution, and 10% H2SO4 solution etc., is superior to those of Al-Mg alloy gauzes made in either China or U.S.A., and much superior to those of gauzes made of low-carbon steel and plastic. The electrode potentials of the Al-Mg-RE alloy in both the natural seawater and 0.05 mol.L-1 Na2SO4 solution increase linearly with increasing RE content in the alloy. The microstructure in the Al-Mg-RE alloy has been refined and the shape of compounds has been obviously changed comparing with those in Al-Mg alloy without RE elements. AU these microstructural changes are favorable to the corrosion resistance of the alloy. The Al-Mg-RE alloy gauze may be used as a substitute for those made df Al-Mg alloy, low-carbon steel and plastic in moisture marine or industrial environment for better serviceability.
文摘This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC'09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic resPonses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the D~ factor, which shows a mere 30% increase. Based on the observed trends, perioddependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.
文摘The present status of NRIM Creep Data Sheet Project and the recent activities of long-term creep and rupture studies on heat resisting steels are described. The project has been continued to produce long-term data such as 100 000h-creep rupture strength for 47 kinds of principal heat resisting steels and alloys, including welded joints. The long-term creep deformation behavior and microstructural evolution during creep have been shown to be complicated.
文摘To improve the oxidation resistance property of iron fibers, a SiO2 coated iron fiber was prepared by sol-gel method, and its microstructure, element and phase composition, antioxidation property, and crystallization were characterized by scanning electron microscopy, thermal gravimetric analysis, X-ray diffraction and 3% CuSO4 solution dripping. It was found that the surface of the iron fiber can be fully covered with SiO2 by using Sol-Gel method. Our results also indicated that the time of iron begin to be corrupted in 3% CuSO4 solution drip increased from 30 s to 240 s, and the temperature increased from 200?C to 310?C. In addition, the oxidation and antioxidation mechanisms of the SiO2 coated iron fiber have also been discussed in this work.
基金supported by the National Natural Science Foundation of China(81973839)High Level Chinese Medical Hospital Promotion Project-Special Project on Formulation R&D and New Drug Translation for Medical Institutions(HLCMHPP2023037)Upgrading the Development and Promotion of about 30 Integrated Chinese and Western Medicine Diagnosis and Treatment Programs(Guidelines for the Diagnosis and Treatment of Breast Cancer with the Combination of Traditional Chinese Medicine and Western Medicine)(ZYZB-2022-798).
文摘Breast cancer is the leading cause of cancer-related deaths in women worldwide,with Hormone Receptor(HR)+being the predominant subtype.Tamoxifen(TAM)serves as the primary treatment for HR+breast cancer.However,drug resistance often leads to recurrence,underscoring the need to develop new therapies to enhance patient quality of life and reduce recurrence rates.Artemisinin(ART)has demonstrated efficacy in inhibiting the growth of drug-resistant cells,positioning art as a viable option for counteracting endocrine resistance.This study explored the interaction between artemisinin and tamoxifen through a combined approach of bioinformatics analysis and experimental validation.Five characterized genes(ar,cdkn1a,erbb2,esr1,hsp90aa1)and seven drug-disease crossover genes(cyp2e1,rorc,mapk10,glp1r,egfr,pgr,mgll)were identified using WGCNA crossover analysis.Subsequent functional enrichment analyses were conducted.Our findings confirm a significant correlation between key cluster gene expression and immune cell infiltration in tamoxifen-resistant and-sensitized patients.scRNA-seq analysis revealed high expression of key cluster genes in epithelial cells,suggesting artemisinin’s specific impact on tumor cells in estrogen receptor(ER)-positive BC tissues.Molecular target docking and in vitro experiments with artemisinin on LCC9 cells demonstrated a reversal effect in reducing migratory and drug resistance of drug-resistant cells by modulating relevant drug resistance genes.These results indicate that artemisinin could potentially reverse tamoxifen resistance in ER-positive breast cancer.
基金sponsored by National Natural Science Foundation of China(50375004).
文摘A coating with high hardness, wear and oxidation resistance was prepared by electric arc spray. The hardness, bonding strength, abrasive wear and values of porosity and oxidation resistance of the coating were investigated. The microstructures and function of Cr3C2 of the coating were analyzed. The results showed surface Rockness Hardness HR30 reached 72.5 and average bond strength reached 49.1Mpa. Also porosity value was less than 2%. In addition, it was found from the comparison between the coating and 45CT coating that, oxidation resistance of the coating was less than that of 45CT, but the abrasive wear of the coating was obvious better than that of 45CT.