期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
Temperature distribution and effect of low-density electric current on B2+O lamellar microstructure of Ti_2AlNb alloy sheet during resistance heating 被引量:1
1
作者 WANG Guo-feng LI Xiao +2 位作者 LI Dan-feng GU Yi-bin FANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期550-559,共10页
The resistance heating method has been one of the prospective techniques for hot processing and welding techniques. The thermal behavior under different densities of electric current and the effect of electric current... The resistance heating method has been one of the prospective techniques for hot processing and welding techniques. The thermal behavior under different densities of electric current and the effect of electric current at temperature of 780 oC using low density of electric current of 6.70 A/mm^2 on the B2+O lamellar microstructure were investigated for Ti2AlNb alloy sheet. The stable temperature denoted a balanced state between the Joule heat and the dissipation of heat including heat conduction, convection and radiation while the distribution of temperature was nonuniform. The highest temperatures of electric current heating samples increased as the density of electric current was elevated. In order to understand the specific effect of electric current on B2+O microstructure, heat treatment for microstructural homogeneity was introduced to this study. After that, according to the microstructural observations by common characterization techniques in the resistance-heating sample and the isothermal furnace-heating sample after homogenizing treatment, few significant differences in content and orientation of phases can be directly and explicitly found except the thermal effect from the applied electric current. The results will provide reference to this prospective forming and welding techniques and the application for Ti2AlNb alloys using resistance heating in the near future. 展开更多
关键词 TI2ALNB resistance heating thermal behavior Joule heat
下载PDF
R&D on Resistive Heat Exchangers for HTS High Rated Current Leads
2
作者 毕延芳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第6期757-764,共8页
The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive se... The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive sections of high-rated current leads are usually made of a heat exchanger cooled by gas flow. The supply of the cooling mass flow incurs more than 90% of the cooling cost for the HTS leads. The mass flow rate requirement depends not only on the length and material of the resistive heat exchanger, but also on the heat transfer coefficient and HEX surface, the joint resistance at the cold end of a sheet-stack HEX with a larger specific presented in the paper. The test results of efficiency can be achieved. and its cooling approach. The design and operation surface and a much smaller hydraulic diameter are an HTS lead optimized for 8 kA show that a 98.4% 展开更多
关键词 current lead resistive heat exchanger heat exchanger efficiency HTS
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal 被引量:1
3
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE Creep strain MICROSTRUCTURE Failure mechanism Creep life
下载PDF
Construction of coal pitch-based HA-K grafted poly condensates and their excellent anti-temperature and viscosity-reducing properties
4
作者 Jing Tan Wei Zhang +6 位作者 Xiu-Ling Yan Hao Zhou Sher Bahadar Khan Seitkhan Azat Shi-You Yan Hao-Jie Ma Xin-Tai Su 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2806-2816,共11页
Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature... Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources. 展开更多
关键词 Viscosity breaker Heat resistance Base mud Graft CP-HA-K polymer CP Salt resistance
下载PDF
Current progress of research on heat -resistant Mg alloys: A review
5
作者 Hong Yang Wenlong Xie +4 位作者 Jiangfeng Song Zhihua Dong Yuyang Gao Bin Jiang Fusheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1406-1425,共20页
With the increasing attention received by lightweight metals,numerous essential fields have increased requirements for mag-nesium(Mg)alloys with good room-temperature and high-temperature mechanical properties.However... With the increasing attention received by lightweight metals,numerous essential fields have increased requirements for mag-nesium(Mg)alloys with good room-temperature and high-temperature mechanical properties.However,the high-temperature mechanic-al properties of commonly used commercial Mg alloys,such as AZ91D,deteriorate considerably with increasing temperatures.Over the past several decades,extensive efforts have been devoted to developing heat-resistant Mg alloys.These approaches either inhibit the gen-eration of thermally unstable phases or promote the formation of thermally stable precipitates/phases in matrices through solid solution or precipitation strengthening.In this review,numerous studies are systematically introduced and discussed.Different alloy systems,includ-ing those based on Mg–Al,Mg–Zn,and Mg–rare earth,are carefully classified and compared to reveal their mechanical properties and strengthening mechanisms.The emphasis,limitations,and future prospects of these heat-resistant Mg alloys are also pointed out and dis-cussed to develop heat-resistant Mg alloys and broaden their potential application areas in the future. 展开更多
关键词 magnesium alloys mechanical properties heat resistance MICROSTRUCTURES high temperatures strengthening mechanisms
下载PDF
Effect of Mn addition on microstructure and mechanical properties of GX40CrNiSi25-12 austenitic heat resistant steel
6
作者 Guan-yu Jiang Meng-wu Wu +2 位作者 Xiao-guang Yang Hui Wang Yu-yuan Zhu 《China Foundry》 SCIE EI CAS CSCD 2024年第3期205-212,共8页
Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and... Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and mechanical property tests were conducted to investigate the effect of Mn addition on the microstructure and mechanical properties of the austenitic heat resistant steel.Results show that the matrix structure in all the three types of steels at room temperature is completely austenite.Carbides NbC and M_(23)C_(6)precipitate at grain boundaries of austenite matrix.With the increase of Mn content,the number of carbides increases and their distribution becomes more uniform.With the Mn content increases from 1.99%to 12.06%,the ultimate tensile strength,yield strength and elongation increase by 14.6%,8.0%and 46.3%,respectively.The improvement of the mechanical properties of austenitic steels can be explained by utilizing classic theories of alloy strengthening,including solid solution strengthening,precipitation strengthening,and grain refinement.The increase in alloy strength can be attributed to solid solution strengthening and precipitation strengthening caused by the addition of Mn.The improvement of the plasticity of austenitic steels can be explained from two aspects:grain refinement and homogenization of precipitated phases. 展开更多
关键词 austenitic heat resistant steel MANGANESE MICROSTRUCTURE mechanical properties
下载PDF
Effect of intermetallic compounds on heat resistance of hot roll bonded titanium alloy-stainless steel transition joint 被引量:4
7
作者 赵东升 闫久春 刘玉君 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1966-1970,共5页
The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels ... The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time. 展开更多
关键词 INTERMETALLICS titanium alloy stainless steel transition joint heat resistance heat treatment hot roll bonding
下载PDF
Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel 被引量:7
8
作者 Lin-qing Xu Dan-tian Zhang +4 位作者 Yong-chang Liu Bao-qun Ning Zhi-xia Qiao Ze-sheng Yan Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第5期438-447,共10页
Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this ... Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron mi- croscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the for- mation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro- structural evolution and hardness variation, the process of tempering can be separated into three steps. 展开更多
关键词 ferritic steel heat resisting TEMPERING PRECIPITATION MARTENSITE COARSENING
下载PDF
Synthesis and Curing Properties of a Novel Novolac Curing Agent Containing Naphthyl and Dicyclopentadiene Moieties 被引量:9
9
作者 任华 孙建中 +1 位作者 吴斌杰 周其云 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第1期127-131,共5页
A novel novolac curing agent containing both naphthalene and dicyclopentadiene (DCPD) moieties was prepared to produce a highly heat-resistant cured polymer network. The chemical structure was characterized using Four... A novel novolac curing agent containing both naphthalene and dicyclopentadiene (DCPD) moieties was prepared to produce a highly heat-resistant cured polymer network. The chemical structure was characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, mass spectrometry, and gel permeation chro-matography analyses. The thermal properties of the resulting polymer from diglycidyl ether of bisphenol A epoxy resin cured with the novel curing agent were evaluated using dynamic mechanical thermal analysis and thermogra-vimetric analysis. Compared with the conventional curing agent, the resulting polymer cured with naphtha-lene/DCPD navolac shows considerable improvement in heat resistant properties such as higher glass transition temperature (Tg) and thermal stability. The result also shows better moisture resistance because of the hydrophobic nature of naphthalene/DCPD structure. 展开更多
关键词 epoxy curing agent heat resistance NAPHTHOL DICYCLOPENTADIENE
下载PDF
Improvements of heat resistance and adhesive property of condensed poly-nuclear aromatic resin via epoxy resin modification 被引量:5
10
作者 Wu Mingbo Wang Yuwei +4 位作者 Jiang Wei Li Shibin Sun Qiqian Zheng Jingtang Qiu Jieshan 《Petroleum Science》 SCIE CAS CSCD 2014年第4期578-583,共6页
A bisphenol epoxy resin was used as modifier to increase the heat resistance of condensed poly-nuclear aromatic (COPNA) resin. The basic properties of COPNA resin and modified resin were characterized by Fourier tra... A bisphenol epoxy resin was used as modifier to increase the heat resistance of condensed poly-nuclear aromatic (COPNA) resin. The basic properties of COPNA resin and modified resin were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H-NMR), vapor pressure osmometry (VPO) and elemental analysis (EA). Average structural parameters of resins were calculated by the improved Brown-Ladner method, and heat resistance of resins was tested by thermogravimetric analysis (TGA). The chemical structure, mechanical properties and heat resistivity of the resin/graphite composites prepared with different resins were compared. The results show that the adhesive property and heat resistance of COPNA resin can be remarkably improved by addition of 5 wt.% epoxy resin. The reason is that the reactions between epoxy groups of epoxy resin and hydroxyl groups of COPNA resin improve the heat resistance and adhesive property of COPNA resin. Electric motor brushes with good mechanical properties and low electrical resistivity were successfully prepared by using the modified resin as binder. 展开更多
关键词 COPNA resin MODIFICATION epoxy resin heat resistance mechanical property
下载PDF
Effects of composite scale on high temperature oxidation resistance of Fe-Cr-Ni heat resistant alloy 被引量:6
11
作者 Wang Haitao Wang Yuqing +2 位作者 Yu Huashun Min Guanghui Wang Zhifu 《China Foundry》 SCIE CAS 2009年第2期109-114,共6页
Fe-Cr-Ni heat resistant alloys with aluminum and silicon addition, alone and in combination, were melted using an intermediate frequency induction furnace with a non-oxidation method. By the oxidation weight gain meth... Fe-Cr-Ni heat resistant alloys with aluminum and silicon addition, alone and in combination, were melted using an intermediate frequency induction furnace with a non-oxidation method. By the oxidation weight gain method, the oxidation resistances of the test alloys were determined at 1,200 ℃ for 500 hours. According to the oxidation weight gains, the oxidation kinetic curves were plotted and the functions were regressed by the least squares method. The results show that the oxidation kinetic curves follow the power function of y = ax^b (a〉0, 0〈b〈1). The effects of scale compositions on oxidation resistance were studied further by analyses using X-ray diffraction (XRD) and scanning electron microscope (SEM). It is found that the composite scale compounds of Cr203, a-Al2O3, SiO2 and FeCr2O4, with compact structure and tiny grains, shows complete oxidation resistance at 1,200℃. When the composite scale lacks a-Al2O3 or SiO2, it becomes weak in oxidation resistance with a loose structure. By the criterion of standard Gibbs formation free energy, the model of the nucleation and growth of the composite scale is established. The forming of the composite scale is the result of the competition of being oxidized and reduced between aluminum, silicon and the matrix metal elements of iron, chromium and nickel. The protection of the composite scale is analyzed essentially by electrical conductivity and strength properties. 展开更多
关键词 Fe-based alloy heat resistant alloy oxide scale oxidation resistance
下载PDF
Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging 被引量:4
12
作者 Ying-hui Zhou Chen-xi Liu +2 位作者 Yong-chang Liu Qian-ying Guo Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第3期283-293,共11页
In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitr... In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitrides during long-term aging, experiments were performed at 700, 800, 850, and 900℃ for different periods (1, 24, 70, and 100 h). The precipitation behavior of carbonitrides in specimens subjected to various aging conditions was explored using carbon replicas and transmission electron microscopy (TEM) observations. The corresponding sizes ofMX carbonitrides were measured. The results demonstrates that MX carbonitrides precipitate in type 347H austenitic steel as Nb(C,N). The coarsening rate constant is time-independent; however, an increase in aging temperature results in an increase in coarsening rate of Nb(C,N). The coarsening process was analyzed according to the calculated diffusion activation energy of Nb(C,N). When the aging temperature was 800-900℃, the mean activation energy was 294 kJ·mol -1, and the coarsening behavior was controlled primarily by the diffusion of Nb atoms. 展开更多
关键词 austenitic steel heat resistance CARBONITRIDES COARSENING NANOPARTICLES DIFFUSION thermal aging
下载PDF
Microstructural Evolution of 2.25Cr-1.6W-V-Nb Heat Resistant Steel during Creep 被引量:6
13
作者 LihuiZHU XuemingMA 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期126-128,共3页
2.25Cr-1.6W-V-Nb developed in Japan, is a low alloy heat resistant steel with good comprehensive properties. Influence of long term creep at elevated temperature on the structure of 2.25Cr-1.6W-V-Nb steel was studied ... 2.25Cr-1.6W-V-Nb developed in Japan, is a low alloy heat resistant steel with good comprehensive properties. Influence of long term creep at elevated temperature on the structure of 2.25Cr-1.6W-V-Nb steel was studied in this paper, and the micromechanism of creep strength degradation was elucidated, too. Both TEM observation and thermodynamic calculation reveal that during creep the transformation occurs from M7C3 and M23C6 to M6C, which can be cavity nucleation sites. Besides, creep at 600癈 also leads to the decrease of dislocation density, the coarsening and coalescence of M23C6, the nucleation of cavities and development of cracks. The strength decrease of 2.25Cr-1.6W-V-Nb steel after long term creep is related to the decrease of dislocation hardening, precipitation hardening, solution hardening, the nucleation of cavities and development of cracks. 展开更多
关键词 Heat resistant steel CREEP Microstructural evolution
下载PDF
Designing for Long Campaign Life Blast Furnace (1)──The Mathematical Model of Temperature Field for Blast Furnace Lining and Cooling Apparatus and New Concept of Long Campaignship Blast Furnace Cooler Design 被引量:5
14
作者 Susen Cheng Qingguo Xue +2 位作者 Weiguo Yang kaolin Wu Tianjun Yang(Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China)(Ironmaking Department, Bejing Central Engineering and Incoporation of Iron and Steel Industry, Bejing, 1000 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第3期178-182,共5页
The physical and mathematical model of temperature field for blast furnace stave coolers was established. The computation results show that the heat resistance of 2-6 mm water scale within the cooling pipe is about 7... The physical and mathematical model of temperature field for blast furnace stave coolers was established. The computation results show that the heat resistance of 2-6 mm water scale within the cooling pipe is about 7%-20% of the total heat resistance of cooling stave body, as for drilling duct type, the heat resistance of 2-6 mm water scale is about 88%-98% of the total heat resistance. Using drilling duct or full cast pipe can eliminate gas clearance and coating layer between pipes and cast iron body and reduce the heat resistance of the cooler sharply and improve the coefficient of heat transfer to a great extent. The water velocity within coolers can be kept at the 1evel of 0.5- 1 .5 m/s, the higher water velocity can not decrease the hot surface temperature, but can increase energy consumption for cooling water. 展开更多
关键词 blast furnace COOLER mathematical model heat resistance water velocity
下载PDF
Synthesis and Characterization of Condensed Polynuclear Aromatic Resin Derived from Ethylene Tar 被引量:7
15
作者 Wu Mingbo Shi Yangyang +5 位作者 Li Shibin Wang Yuwei Tan Minghui Wang Ding Zheng Jingtang Tsubaki Noritatsu 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第4期42-47,共6页
As a kind of low-cost and readily available industrial byproduct, ethylene tar (ET) was for the first time utilized for the preparation of heat-resistant condensed polynuclear aromatic resin (COPNAR). The basic pr... As a kind of low-cost and readily available industrial byproduct, ethylene tar (ET) was for the first time utilized for the preparation of heat-resistant condensed polynuclear aromatic resin (COPNAR). The basic properties of ET and the resulted COPNAR were characterized by FT-IR, IH-NMR, TGA and elemental analysis. The test results showed that ET with high aromatic content (〉50%) was suitable for the synthesis of COPNAR with superior heat resistance. The average molecular structure of ET was obtained by means of the improved Brown-Ladner method, and the reaction mechanism was considered as an acid-catalyzed positive ion-typed polymerization. Our findings have provided a new route to develop ET into technology-added heat-resistant resins. 展开更多
关键词 condensed polynuclear aromatic resin ethylene tar 1 4-benzenedimethanol heat resistance
下载PDF
Hot deformation behavior of Super304H austenitic heat resistant steel 被引量:3
16
作者 Shu-ping Tan Zhen-hua Wang +2 位作者 Shi-chang Cheng Zheng-dong Liu Jie-cai Han 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第2期167-172,共6页
The hot compression tests of Super304H austenitic heat resistant steel were carried out at 800-1200℃and 0.005-5 s^-1 using a Gleeble 3500 thermal-mechanical simulator,and its deformation behavior was analyzed.The res... The hot compression tests of Super304H austenitic heat resistant steel were carried out at 800-1200℃and 0.005-5 s^-1 using a Gleeble 3500 thermal-mechanical simulator,and its deformation behavior was analyzed.The results show that the flow stress of Super304H steel decreases with the decrease of strain rate and the increase of deformation temperature; the hot deformation activation energy of the steel is 485 kJ/mol.The hot deformation equation and the relationship between the peak stress and the deformation temperature and strain rate is obtained.The softening caused by deformation heating cannot be neglected when both the deformation temperature and strain rate are higher. 展开更多
关键词 austenitic steel heat resistant hot deformation flow stress dynamic recrystallization
下载PDF
Performance improvement of Fe-6.5Si soft magnetic composites with hybrid phosphate-silica insulation coatings 被引量:3
17
作者 WANG Jian LIU Xin +1 位作者 LI La MAO Xin-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1266-1278,共13页
Fe-6.5Si soft magnetic composites(SMCs)with hybrid phosphate-silica insulation coatings have been designed to improve their comprehensive property via chemical coating combining sol-gel method in this work.The microst... Fe-6.5Si soft magnetic composites(SMCs)with hybrid phosphate-silica insulation coatings have been designed to improve their comprehensive property via chemical coating combining sol-gel method in this work.The microstructure and magnetic performance of the Fe-6.5Si SMCs with hybrid phosphate-silica insulation coatings were investigated.The hybrid phosphate-silica coatings with high heat resistance and high withstand pressure,formed on the surface of the Fe-6.5Si ferromagnetic powders,were found stable in the composites.Compared with Fe-6.5Si SMCs coated by single phosphate or single silica,Fe-6.5Si SMCs with hybrid phosphate-silica show much higher permeability and lower core loss.The work provides a new way to optimize the magnetic performance of soft magnetic composites. 展开更多
关键词 soft magnetic composites phosphate-silica insulation coatings heat resistance magnetic performances
下载PDF
IMPROVEMENT OF TYPE IV CRACKING RESISTANCE OF 9Cr HEAT RESISTING STEEL WELDMENT BY BORON ADDITION 被引量:3
18
作者 M.Tabuchi M.Kondo +3 位作者 T.Watanabe H.Hongo F.Yin F.Abe 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期331-337,共7页
Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type Ⅳ fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affe... Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type Ⅳ fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affected zone (HAZ). Because boron is considered to suppress the coarsening of grain boundary precipitates and growth of creep voids, we have investigated the effect of boron addition on the creep properties of 9Cr steel weldments. Four kinds of 9Cr3WSCoVNb steels with boron content varying from 4.7×10-5 to 1.8×10-4 and with nitrogen as low as 2.0×10-5 were prepared. The steel plates were welded by gas tungsten arc welding and crept at 923K. It was found that the microstructures of HAZ were quite different from those of conventional high Cr steels such as P91 and P92, namely the fine-grained HAZ did not exist in the present steel weldments. Boron addition also has the effect to suppress coarsening of grain boundary carbides in HAZ during creep. As a result of these phenomena, the welded joints of present steels showed no Type Ⅳ fractures and much better creep lives than those of conventional steels. 展开更多
关键词 high Cr heat resistant steel welded joint boron addition Type IV fracture
下载PDF
Preparation and Characterization of Phenolic Prepolymer Impregnated Chinese Fir by Cyclic Increasing-Pressure Method with Green and Efficient 被引量:3
19
作者 Yuan Zhang Ping Li +3 位作者 Yiqiang Wu Guangming Yuan Xianjun Li Yingfeng Zuo 《Journal of Renewable Materials》 SCIE EI 2020年第11期1473-1488,共16页
The Chinese fir wood was impregnated using a cyclic increasingpressure method(CIPM)with phenolic prepolymers as the impregnating modifier.Unmodified Chinese fir and progressive increasing-pressure method(PIPM)impregn... The Chinese fir wood was impregnated using a cyclic increasingpressure method(CIPM)with phenolic prepolymers as the impregnating modifier.Unmodified Chinese fir and progressive increasing-pressure method(PIPM)impregnated Chinese fir were used as reference samples and were compared and analyzed.The product’s chemical structure,internal morphology,crystal structure,and heat resistance were characterized.The transversal and longitudinal sections showed better filling effects,so that it bore greater external loading and reduced the water storage space.CIPM infused more phenolic prepolymer into the Chinese fir.Not only producing more physical filling but also forming more hydrogen bond associations and chemical bond combinations.Compared with PIPM and unmodi-fied Chinese fir,the CIPM impregnated Chinese fir had better mechanical strength and water resistance.The cellulose chains in CIPM impregnated Chinese fir were more closely linked and their crystallinity were clearly improved.Changes in internal morphology and crystal structure explained the reason why the mechanical properties and water resistance of CIPM impregnated Chinese fir were improved significantly.This Chinese fir had lower thermal decomposition rates,higher decomposition residual rates,and smaller combustion flames,which confirmed that it possessed improved heat and fire resistance. 展开更多
关键词 Chinese fir phenolic prepolymer cyclic increasing pressure method chemical structure crystalline structure heat resistance
下载PDF
Characterizing pressure fluctuation into single-loop oscillating heat pipe 被引量:3
20
作者 PARK Yong-ho Md.Riyad Tanshen +2 位作者 Md.J.Nine CHUNG Han-shik JEONG Hyo-min 《Journal of Central South University》 SCIE EI CAS 2012年第9期2578-2583,共6页
The pressure characteristics inside single loop oscillating heat pipe (OHP) having 4.5 mm inner diameter copper tube with the loop height of 440 mm were addressed. Distilled water was used as working fluid inside th... The pressure characteristics inside single loop oscillating heat pipe (OHP) having 4.5 mm inner diameter copper tube with the loop height of 440 mm were addressed. Distilled water was used as working fluid inside the OHP with different filling ratios of 40%, 60% and 80% of total inside volume. Experimental results show that the thermal characteristics are significantly inter-related with pressure fluctuations as well as pressure frequency. And the pressure frequency also depends upon the evaporator temperature that is maintained in the range of 60-96 ℃. Piezoresistive absolute pressure sensor (Model-Kistler 4045A5) was used to take data. The investigation shows that the filling ratio of 60% gives the highest inside pressure magnitude at maximum number of pressure frequency at any of set evaporator temperature and the lowest heat flow resistance is achieved at 60% filling ratio. 展开更多
关键词 oscillating heat pipe pressure fluctuation heat flow resistance filling ratio
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部