期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A Novel Resonant Frequency Tracking Control for Linear Compressor Based on MRAS Method 被引量:1
1
作者 Wei Xu Qizhe Wang +2 位作者 Xiang Li Yi Liu Jianguo Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第3期227-236,共10页
To optimize the efficiency of the linear compressor,its operating frequency must be controlled equal to the system resonant frequency.The traditional resonant frequency tracking control algorithm relies on the steady ... To optimize the efficiency of the linear compressor,its operating frequency must be controlled equal to the system resonant frequency.The traditional resonant frequency tracking control algorithm relies on the steady state characteristics of the system,which suffers from slow convergence speed,low accuracy and slow system response.In order to solve these problems,a novel resonant frequency tracking control for linear compressor based on model reference adaptive system(MRAS)is proposed in this paper,and the parameter adaptive rate is derived by the Popov's hyperstability theory,so that the system resonant frequency can be directly calculated through the parameter adaptive rate.Furthermore,the traditional algorithm needs to calculate the piston stroke signal by integrating the back-EMF,which has the problem of integral drift.The algorithm proposed in this paper only needs the velocity signal,and the accuracy of the velocity calculation can be ensured by utilizing the self-adaptive band-pass filter(SABPF),thereby greatly improving the accuracy of the resonance frequency calculation.Simulation results verify the effectiveness of the proposed algorithm. 展开更多
关键词 linear compressor linear oscillating motor(LOM) resonant frequency tracking control model reference adaptive system(MRAS)
下载PDF
Improved voltage tracking of autonomous microgrid technology using a combined resonant controller with lead-lag compensator adopting negative imaginary theorem 被引量:2
2
作者 Md.Yah-Ya Ul Haque Md.Rashidul Islam +1 位作者 Tanvir Ahmed Md.Rafiqul Islam Sheikh 《Protection and Control of Modern Power Systems》 2022年第1期149-164,共16页
Growing application of distributed generation units at remote places has led to the evolution of microgrid(MG)technology.When an MG system functions independently,i.e.,in autonomous mode,unpredictable loads and uncert... Growing application of distributed generation units at remote places has led to the evolution of microgrid(MG)technology.When an MG system functions independently,i.e.,in autonomous mode,unpredictable loads and uncertainties emerge throughout the system.To obtain stable and flexible operation of an autonomous MG,a rigid control mechanism is needed.In this paper,a robust high-performance controller is introduced to improve the performance of voltage tracking of an MG system and to eliminate stability problems.A combination of a resonant controller and a lead-lag compensator in a positive position feedback path is designed,one which obeys the negative imaginary(NI)theorem,for both single-phase and three-phase autonomous MG systems.The controller has excellent tracking performance.This is investigated through considering various uncertainties with different load dynamics.The feasibility and effectiveness of the controller are also determined with a comparative analysis with some well-known controllers,such as linear quadratic regulator,model predictive and NI approached resonant controllers.This confirms the superi-ority of the designed controller. 展开更多
关键词 Negative imaginary theorem Resonant controller Lead-lag compensator Autonomous microgrid Voltage tracking
原文传递
High-bandwidth nanopositioning via active control of system resonance
3
作者 Linlin LI Sumeet S.APHALE Limin ZHU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2021年第2期331-339,共9页
Typically,the achievable positioning bandwidth for piezo-actuated nanopositioners is severely limited by the first,lightly-damped resonance.To overcome this issue,a variety of open-and closed-loop control techniques t... Typically,the achievable positioning bandwidth for piezo-actuated nanopositioners is severely limited by the first,lightly-damped resonance.To overcome this issue,a variety of open-and closed-loop control techniques that commonly combine damping and tracking actions,have been reported in literature.However,in almost all these cases,the achievable closed-loop bandwidth is still limited by the original open-loop resonant frequency of the respective positioning axis.Shifting this resonance to a higher frequency would undoubtedly result in a wider bandwidth.However,such a shift typically entails a major mechanical redesign of the nanopositioner.The integral resonant control(IRC)has been reported earlier to demonstrate the significant performance enhancement,robustness to parameter uncertainty,gua-ranteed stability and design flexibility it affords.To further exploit the IRC scheme’s capabilities,this paper presents a method of actively shifting the resonant frequency of a nanopositioner’s axis,thereby delivering a wider closed-loop positioning bandwidth when controlled with the IRC scheme.The IRC damping control is augmented with a standard integral tracking controller to improve positioning accuracy.And both damping and tracking control parameters are analytically optimized to result in a Butterworth Filter mimicking pole-placement—maximally flat passband response.Experiments are conducted on a nanopositioner’s axis with an open-loop resonance at 508 Hz.It is shown that by employing the active resonance shifting,the closed-loop positioning bandwidth is increased from 73 to 576 Hz.Consequently,the root-mean-square tracking errors for a 100 Hz triangular trajectory are reduced by 93%. 展开更多
关键词 nanopositioning stage high-bandwidth resonant mode control tracking control integral resonant control
原文传递
Improved direct power control of a grid-connected voltage source converter during network unbalance 被引量:6
4
作者 Peng ZHOU Wei ZHANG Yi-kang HE Rong ZENG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2010年第10期817-823,共7页
This paper deals with an improved direct power control(DPC) strategy for the pulse width modulation(PWM) voltage source converter(VSC) under unbalanced grid voltage conditions.In order to provide enhanced control perf... This paper deals with an improved direct power control(DPC) strategy for the pulse width modulation(PWM) voltage source converter(VSC) under unbalanced grid voltage conditions.In order to provide enhanced control performance for the VSC,the resonant controllers tuned at the double grid frequency are applied in the DPC design to eliminate the power pulsations and dc link voltage ripples produced by the transient unbalanced grid faults.In this way,the output power and dc link voltage of the VSC can be directly regulated without positive and negative sequential decomposition.As a result,and as has been verified by experiment,the proposed method can provide fast dynamic response with easy implementation. 展开更多
关键词 Voltage source converter Direct power control UNBALANCE Resonant controller
原文传递
Analysis and control optimization of positive pressure fluctuation in electromechanical oxygen regulator
5
作者 Rui PAN Guiping LIN +2 位作者 Zhigao SHI Yu ZENG Xue YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期205-213,共9页
The Electromechanical Oxygen Regulator(EMOR)is a new type of aviator oxygen equipment.Positive pressure refers to the pressure difference between the breath pressure and the ambient pressure during pressurized oxygen ... The Electromechanical Oxygen Regulator(EMOR)is a new type of aviator oxygen equipment.Positive pressure refers to the pressure difference between the breath pressure and the ambient pressure during pressurized oxygen supply.The phenomenon of positive pressure fluctuation was believed to reduce the system performance.The current open-loop control method cannot solve this problem.In this paper,the mathematical model was established and main factors were analyzed.By combining experimental research and simulation calculation,it was determined that pressure fluctuation was caused by inlet pressure and diaphragm deformation together.With the increase of pulmonary ventilation volume,the influence of inlet pressure on fluctuation decreases gradually,while the proportion of diaphragm deformation increases rapidly.A closed-loop control strategy of Proportional Resonant with Feedforward Compensation(PRFC)was proposed to solve the problem and control parameters were obtained through co-simulation.The effectiveness of the control strategy was verified by experiments.The results show that the control strategy can enhance the anti-disturbance ability of the system and significantly reduce the pressure fluctuation range,which is beneficial to improving the overall system performance. 展开更多
关键词 Aviator oxygen system Electromechanical Oxygen Regulator(EMOR) Feedforward control Disturbance rejection Proportional resonant control
原文传递
Active and Reactive Power Decoupling Control of Grid-Connected Inverters in Stationary Reference Frame
6
作者 Xin Zhao Liuchen Chang 《Chinese Journal of Electrical Engineering》 CSCD 2017年第3期18-24,共7页
Proportion resonant(PR)controllers are able to achieve zero steady-state error for AC input signals and are widely used for simplifying control systems in the stationary reference frame.However,power decoupling in the... Proportion resonant(PR)controllers are able to achieve zero steady-state error for AC input signals and are widely used for simplifying control systems in the stationary reference frame.However,power decoupling in the stationary reference frame with a PR controller has not been investigated thoroughly.Based on the complex vector model of a grid-connected inverter(GCI),this paper deduces theoretically the power coupling relationship of GCI with the traditional PR current controller.A modified PR controller is provided for achieving the power decoupling,and the design method of the controller is presented.Simulation and experimental results verify that there is coupling between active and reactive power using the traditional PR controller and the proposed method can realize the power decoupling. 展开更多
关键词 Grid-connected inverter complex vector proportion resonant controller power decoupling control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部