The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine...The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the “soil-mine” system could be equivalent to a damping “mass-spring” resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil–mine system could be investigated by changing the parameter setup in a flexible manner.展开更多
We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy(NV) color center with a nearest neighbor ^13C nuclear spin in diamond to detect the strength and direction(includin...We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy(NV) color center with a nearest neighbor ^13C nuclear spin in diamond to detect the strength and direction(including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance(ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor ^13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave(CW) spectrum.展开更多
Magnetically coupled resonant technology is a novel method for solving the breakpoint locating of power grounding grid.But the method can only detect breakpoints of a single mesh grounding grid at present.In this pape...Magnetically coupled resonant technology is a novel method for solving the breakpoint locating of power grounding grid.But the method can only detect breakpoints of a single mesh grounding grid at present.In this paper,a magnetically coupled resonant detection method for four-hole grounding grid breakpoint is proposed.Firstly,the equivalent circuit model of the four mesh grounding grid with two types of breakpoints,namely edge branch and intermediate branch,is established.The input impedance and phase angle of the system are obtained by analyzing the equivalent capacitance and equivalent resistance in the model.Secondly,the magnetically coupled resonant physical process of grounding grid faults is solved via HFSS software.The magnetic field intensity and phase frequency characteristic curves of four mesh holes with different branches and positions of breakpoints and different corrosion degrees are studied,and an experimental system is built to verify the feasibility.The results show that under the condition of grounding grid buried depth of 0.5 m and input frequency of 1~15MHz,and there is an inverse relationship between equivalent capacitance and distortion frequency,the phase angle is positively correlated with the degree of corrosion of grounding grid,and the error of signal distortion frequency can be positioned at 5%.This paper provides some ideas for the application of magnetic coupling grounding grid detection technology.展开更多
The application of the vector magnetometry based on nitrogen-vacancy(NV)ensembles has been widely investigatedin multiple areas.It has the superiority of high sensitivity and high stability in ambient conditions with ...The application of the vector magnetometry based on nitrogen-vacancy(NV)ensembles has been widely investigatedin multiple areas.It has the superiority of high sensitivity and high stability in ambient conditions with microscale spatialresolution.However,a bias magnetic field is necessary to fully separate the resonance lines of optically detected magneticresonance(ODMR)spectrum of NV ensembles.This brings disturbances in samples being detected and limits the rangeof application.Here,we demonstrate a method of vector magnetometry in zero bias magnetic field using NV ensembles.By utilizing the anisotropy property of fluorescence excited from NV centers,we analyzed the ODMR spectrum of NVensembles under various polarized angles of excitation laser in zero bias magnetic field with a quantitative numerical modeland reconstructed the magnetic field vector.The minimum magnetic field modulus that can be resolved accurately is downto~0.64 G theoretically depending on the ODMR spectral line width(1.8 MHz),and~2 G experimentally due to noisesin fluorescence signals and errors in calibration.By using 13C purified and low nitrogen concentration diamond combinedwith improving calibration of unknown parameters,the ODMR spectral line width can be further decreased below 0.5 MHz,corresponding to~0.18 G minimum resolvable magnetic field modulus.展开更多
In this paper, a high-performance liquid chromatography coupled with ultraviolet detection and Fourier transform-ion cyclotron resonance mass spectrometry (HPLC-UV/FrICRMS) method was described for the investigation...In this paper, a high-performance liquid chromatography coupled with ultraviolet detection and Fourier transform-ion cyclotron resonance mass spectrometry (HPLC-UV/FrICRMS) method was described for the investigation of impurity profile in moxifloxacin (MOX) drug substance and chemical reference substance. Ten impurities were detected by HPLC-UV, while eight impurities were identified by using the high accurate molecular mass combined with multiple-stage mass spectrometric data and fragmentation rules. In addition, to our knowledge, five impurities were founded for the first time in MOX drug substance.展开更多
An ultra-sensitive and highly selective parathion methyl (PM) detection method by surface plasmon resonance (SPR) combined with molecularly imprinted films (MIF) was developed. The PM-imprinted film was prepared...An ultra-sensitive and highly selective parathion methyl (PM) detection method by surface plasmon resonance (SPR) combined with molecularly imprinted films (MIF) was developed. The PM-imprinted film was prepared by thermo initiated polymerization on the bare Au surface of an SPR sensor chip, Template PM molecules were quickly removed by an organic solution of acetonitrilelacetic acid (9:1, v/v), causing a shift of 0.5° in SPR angle. In the concentrations range of 10^-13-10^-10 mol/L, the refractive index showed a gradual increase with higher concentrations of template PM and the changes of SPR angles were linear with the negative logarithm of PM concentrations. In the experiment, the minimum detectable concentration was 10^-13 mol/L. The selectivity of the thin PM-imprinted film against diuron, tetrachlorvinphose and fenitrothion was examined, but no observable binding was detected. The results in the experiment suggested that the MIF had the advantages of high sensitivity and selectivity.展开更多
Nuclear magnetic resonance gyroscopes (NMRGs) are a kind of rotation-speed sensor that senses the angular velocity by measuring a frequency shift in the Larmor pre- cession of the nuclear spin in a constant magnetic...Nuclear magnetic resonance gyroscopes (NMRGs) are a kind of rotation-speed sensor that senses the angular velocity by measuring a frequency shift in the Larmor pre- cession of the nuclear spin in a constant magnetic field.展开更多
We suggest an experimental scheme that a single nitrogen-vacancy(NV) center coupled to a nearest neighbor ^13C nucleus as a sensor in diamond can be used to detect a static vector magnetic field. By means of optical...We suggest an experimental scheme that a single nitrogen-vacancy(NV) center coupled to a nearest neighbor ^13C nucleus as a sensor in diamond can be used to detect a static vector magnetic field. By means of optical detection magnetic resonance(ODMR) technique, both the strength and the direction of the vector field could be determined by relevant resonance frequencies of continuous wave(CW) and Ramsey spectrums. In addition, we give a method that determines the unique one of eight possible hyperfine tensors for an(NV–^13C) system. Finally, we propose an unambiguous method to exclude the symmetrical solution from eight possible vector fields, which correspond to nearly identical resonance frequencies due to their mirror symmetry about ^14N–Vacancy–^13 C(^14N–V–^13C) plane.展开更多
Fault-related resonance frequency band extraction-based demodulation methods are widely used for bearing diagnostics.However,due to the high peaks of strong gear meshing interference,the classical band selection metho...Fault-related resonance frequency band extraction-based demodulation methods are widely used for bearing diagnostics.However,due to the high peaks of strong gear meshing interference,the classical band selection methods have poor performance and cannot work well for bearing fault type detection.As such,the CVRgram-based bearing fault diagnosis method is proposed in this paper.In the proposed method,inspired by the conditional variance(CV)index and root mean square(RMS),a novel index,named the CV/root mean square(CVR),is first proposed.The CVR index has high robustness for the interference of non-Gaussian or Gaussian noise and has the ability to determine the center frequency of the weak bearing fault-related resonance frequency band under strong interference.Secondly,motived by the Kurtogram,the CVRgram algorithm is developed for adaptively determining the optimal filtering parameters.Finally,the CVRgram-based bearing fault diagnosis method under strong gear meshing interference is proposed.The performance of the CVRgram-based method is verified by both the simulation signal and the experiment signal.The comparison analysis with the Kurtogram,Protrugram,and CVgram-based method shows that the proposed technique has a much better ability for bearing fault detection under strong noise interference.展开更多
Multidimensional Floquet-driven alignment systems with dynamical symmetry present various exotic phenomena and applications.However,there are challenges in directly characterizing large-spin dynamical symmetry from sp...Multidimensional Floquet-driven alignment systems with dynamical symmetry present various exotic phenomena and applications.However,there are challenges in directly characterizing large-spin dynamical symmetry from spectra.Here,we first observe the symmetry-protected selection rules of dynamical high-dimensional parity in a large-spin(F=4)system.We theoretically construct a Floquet-driven alignment system that can be used to reveal high-dimensional spatiotemporal symmetry.In the experiment,the system is implemented in Cs atomic gas subjected to two-dimensional Floquet-modulated magnetic resonance driving.By developing Floquet detection protocols of alignment double-sided spectra,we directly verify symmetry-protected selection rules of dynamical high-dimensional parity for large-spin systems.This work advances the exploration of dynamical symmetry to large spins,and unravels a universal Floquet scheme for the investigation of symmetry-protected selection rules.展开更多
In this paper,a Kretschmann configuration based surface plasmon resonance(SPR)sensor is numerically designed using graphene-MoS_(2) hybrid structure TiO_(2)-SiO_(2) nano particles for formalin detection.In this design...In this paper,a Kretschmann configuration based surface plasmon resonance(SPR)sensor is numerically designed using graphene-MoS_(2) hybrid structure TiO_(2)-SiO_(2) nano particles for formalin detection.In this design,the observations of SPR angle versus minimum reflectance and SPR frequency(FSPR)versus maximum transmittance(Tmax)are considered.The chitosan is used as probe legend to perform reaction with the formalin(40%formaldehyde)which acts as target legend.In this paper,both graphene and MoS_(2) are used as biomolecular acknowledgment element(BAE)and TiO_(2) as well as SiO_(2) bilayers is used to improve the sensitivity of the sensor.The numerical results show that the variation of FSPR and SPR angles for inappropriate sensing of formalin is quite insignificant which confirms the absence of formalin.On the other hand,these variations for appropriate sensing are considerably significant that confirm the presence of formalin.At the end of this article,the variation of sensitivity of the proposed biosensor is measured in corresponding to the increment of a refractive index with a refractive index step 0.01 refractive index unit(RIU).In inclusion of TiO_(2)-SiO_(2) bilayers with graphene-MoS_(2),a maximum sensitivity of 85.375%is numerically calculated.展开更多
Interaction of straight chain alcohol vapors with MOF-199-functionalized films was studied by SPR. The signals had linear relationships with the concentration of alcohols over a wide range from 0 to 70% (v/v) and we...Interaction of straight chain alcohol vapors with MOF-199-functionalized films was studied by SPR. The signals had linear relationships with the concentration of alcohols over a wide range from 0 to 70% (v/v) and were reversible in proportional to the chain length, with R2 all above 0.99.展开更多
Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome p...Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome procedures, long analysis time and insufficient sensitivity. Recently, single-particle detection technology has emerged as a powerful tool in the biosensing area due to its significant advantages of ultrahigh sensitivity, low sample-consumption and rapid analysis time. Especially, the introduction of novel nanomaterials has greatly promoted the development of single-particle detection and its applications for DNA sensing. In this review, we summarize the recent advance in single-particle detection strategies for DNA sensing, and focus mainly on metallic nanoparticle-and semiconductor quantum dot-based single-particle detection. We highlight the emerging trends in this field as well.展开更多
A hollow-core metal-cladding waveguide(HCMW) optofluidic resonator that works based on a free-space coupling technique is designed. An HCMW can excite ultra-high-order modes(UOMs) at the coupled angle, which can b...A hollow-core metal-cladding waveguide(HCMW) optofluidic resonator that works based on a free-space coupling technique is designed. An HCMW can excite ultra-high-order modes(UOMs) at the coupled angle, which can be used as an optofluidic resonator to detect alterations of the epidermal growth factor receptor(EGFR)concentration. Theoretical analysis shows that the UOMs excited in the HCMW have a highly sensitive response to the refractive index(RI) variation of the guiding layer. An EGFR solution with a 0.2 ng/mL alteration is detected, and the RI variation caused by the concentration alteration is about 2.5 × 10^(-3).展开更多
Due to their exceptional optical and magnetic properties,negatively charged nitrogen-vacancy(NV−)centers in nanodiamonds(NDs)have been identified as an indispensable tool for imaging,sensing and quantum bit manipulati...Due to their exceptional optical and magnetic properties,negatively charged nitrogen-vacancy(NV−)centers in nanodiamonds(NDs)have been identified as an indispensable tool for imaging,sensing and quantum bit manipulation.The investigation of the emission behaviors of single NV−centers at the nanoscale is of paramount importance and underpins their use in applications ranging from quantum computation to super-resolution imaging.Here,we report on a spin-manipulated nanoscopy method for nanoscale resolutions of the collectively blinking NV−centers confined within the diffraction-limited region.Using wide-field localization microscopy combined with nanoscale spin manipulation and the assistance of a microwave source tuned to the optically detected magnetic resonance(ODMR)frequency,we discovered that two collectively blinking NV−centers can be resolved.Furthermore,when the collective emitters possess the same ground state spin transition frequency,the proposed method allows the resolving of each single NV−center via an external magnetic field used to split the resonant dips.In spin manipulation,the three-level blinking dynamics provide the means to resolve two NV−centers separated by distances of 23 nm.The method presented here offers a new platform for studying and imaging spin-related quantum interactions at the nanoscale with superresolution techniques.展开更多
基金Project supported,in part,by the National Natural Science Foundation of China(Grant No.41104065)the"Chen Guang"Program of Shanghai Municipal Ed-ucation Commission and Shanghai Education Development Foundation,China(Grant No.12CG047)+1 种基金the Scientific Research Innovation Program of Shanghai Municipal Education Commission,China(Grant No.13YZ022)the State Key Laboratory of Precision Measuring Technology and Instruments,China
文摘The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the “soil-mine” system could be equivalent to a damping “mass-spring” resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil–mine system could be investigated by changing the parameter setup in a flexible manner.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11305074,11135002,and 11275083)the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province,China(Grant No.gxyq ZD2017080)the Education Department Natural Science Foundation of Anhui Province,China(Grant No.KJHS2015B09)
文摘We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy(NV) color center with a nearest neighbor ^13C nuclear spin in diamond to detect the strength and direction(including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance(ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor ^13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave(CW) spectrum.
基金supported by the Science and Technology Research Innovation Team Project LT2019007 of the Department of Education of Liaoning Provincethe Discipline Innovation Team Project LNTU20TD-02,29 of Liaoning Technical University。
文摘Magnetically coupled resonant technology is a novel method for solving the breakpoint locating of power grounding grid.But the method can only detect breakpoints of a single mesh grounding grid at present.In this paper,a magnetically coupled resonant detection method for four-hole grounding grid breakpoint is proposed.Firstly,the equivalent circuit model of the four mesh grounding grid with two types of breakpoints,namely edge branch and intermediate branch,is established.The input impedance and phase angle of the system are obtained by analyzing the equivalent capacitance and equivalent resistance in the model.Secondly,the magnetically coupled resonant physical process of grounding grid faults is solved via HFSS software.The magnetic field intensity and phase frequency characteristic curves of four mesh holes with different branches and positions of breakpoints and different corrosion degrees are studied,and an experimental system is built to verify the feasibility.The results show that under the condition of grounding grid buried depth of 0.5 m and input frequency of 1~15MHz,and there is an inverse relationship between equivalent capacitance and distortion frequency,the phase angle is positively correlated with the degree of corrosion of grounding grid,and the error of signal distortion frequency can be positioned at 5%.This paper provides some ideas for the application of magnetic coupling grounding grid detection technology.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFB3202800 and 2023YF0718400)Chinese Academy of Sciences(Grant No.ZDZBGCH2021002)+2 种基金Chinese Academy of Sciences(Grant No.GJJSTD20200001)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0303204)Anhui Initiative in Quantum Information Technologies,USTC Tang Scholar,and the Fundamental Research Funds for the Central Universities.
文摘The application of the vector magnetometry based on nitrogen-vacancy(NV)ensembles has been widely investigatedin multiple areas.It has the superiority of high sensitivity and high stability in ambient conditions with microscale spatialresolution.However,a bias magnetic field is necessary to fully separate the resonance lines of optically detected magneticresonance(ODMR)spectrum of NV ensembles.This brings disturbances in samples being detected and limits the rangeof application.Here,we demonstrate a method of vector magnetometry in zero bias magnetic field using NV ensembles.By utilizing the anisotropy property of fluorescence excited from NV centers,we analyzed the ODMR spectrum of NVensembles under various polarized angles of excitation laser in zero bias magnetic field with a quantitative numerical modeland reconstructed the magnetic field vector.The minimum magnetic field modulus that can be resolved accurately is downto~0.64 G theoretically depending on the ODMR spectral line width(1.8 MHz),and~2 G experimentally due to noisesin fluorescence signals and errors in calibration.By using 13C purified and low nitrogen concentration diamond combinedwith improving calibration of unknown parameters,the ODMR spectral line width can be further decreased below 0.5 MHz,corresponding to~0.18 G minimum resolvable magnetic field modulus.
基金the Ministry of Public Health of the People's Republic of China(No200802038) for financial support
文摘In this paper, a high-performance liquid chromatography coupled with ultraviolet detection and Fourier transform-ion cyclotron resonance mass spectrometry (HPLC-UV/FrICRMS) method was described for the investigation of impurity profile in moxifloxacin (MOX) drug substance and chemical reference substance. Ten impurities were detected by HPLC-UV, while eight impurities were identified by using the high accurate molecular mass combined with multiple-stage mass spectrometric data and fragmentation rules. In addition, to our knowledge, five impurities were founded for the first time in MOX drug substance.
基金supported by the National Natural Science Foundation of China (No.20771015)the National ‘‘111’’ Project of China’s Higher Education (No.B07012)
文摘An ultra-sensitive and highly selective parathion methyl (PM) detection method by surface plasmon resonance (SPR) combined with molecularly imprinted films (MIF) was developed. The PM-imprinted film was prepared by thermo initiated polymerization on the bare Au surface of an SPR sensor chip, Template PM molecules were quickly removed by an organic solution of acetonitrilelacetic acid (9:1, v/v), causing a shift of 0.5° in SPR angle. In the concentrations range of 10^-13-10^-10 mol/L, the refractive index showed a gradual increase with higher concentrations of template PM and the changes of SPR angles were linear with the negative logarithm of PM concentrations. In the experiment, the minimum detectable concentration was 10^-13 mol/L. The selectivity of the thin PM-imprinted film against diuron, tetrachlorvinphose and fenitrothion was examined, but no observable binding was detected. The results in the experiment suggested that the MIF had the advantages of high sensitivity and selectivity.
基金supported by the National Natural Science Foundation of China(Nos.61673041,61673041,and 61227902)the National High Technology Research and Development Program 863(No.2014AA123401)
文摘Nuclear magnetic resonance gyroscopes (NMRGs) are a kind of rotation-speed sensor that senses the angular velocity by measuring a frequency shift in the Larmor pre- cession of the nuclear spin in a constant magnetic field.
基金Protect supported by the National Natural Science Foundation of China(Grant Nos.11305074,11135002,and 11275083)the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province,China(Grant No.gxyq ZD2017080)the Natural Science Foundation of Anhui Province,China(Grant No.KJHS2015B09)
文摘We suggest an experimental scheme that a single nitrogen-vacancy(NV) center coupled to a nearest neighbor ^13C nucleus as a sensor in diamond can be used to detect a static vector magnetic field. By means of optical detection magnetic resonance(ODMR) technique, both the strength and the direction of the vector field could be determined by relevant resonance frequencies of continuous wave(CW) and Ramsey spectrums. In addition, we give a method that determines the unique one of eight possible hyperfine tensors for an(NV–^13C) system. Finally, we propose an unambiguous method to exclude the symmetrical solution from eight possible vector fields, which correspond to nearly identical resonance frequencies due to their mirror symmetry about ^14N–Vacancy–^13 C(^14N–V–^13C) plane.
基金supported by the National Natural Science Foundation of China (Grant Nos.52075008,51905292)。
文摘Fault-related resonance frequency band extraction-based demodulation methods are widely used for bearing diagnostics.However,due to the high peaks of strong gear meshing interference,the classical band selection methods have poor performance and cannot work well for bearing fault type detection.As such,the CVRgram-based bearing fault diagnosis method is proposed in this paper.In the proposed method,inspired by the conditional variance(CV)index and root mean square(RMS),a novel index,named the CV/root mean square(CVR),is first proposed.The CVR index has high robustness for the interference of non-Gaussian or Gaussian noise and has the ability to determine the center frequency of the weak bearing fault-related resonance frequency band under strong interference.Secondly,motived by the Kurtogram,the CVRgram algorithm is developed for adaptively determining the optimal filtering parameters.Finally,the CVRgram-based bearing fault diagnosis method under strong gear meshing interference is proposed.The performance of the CVRgram-based method is verified by both the simulation signal and the experiment signal.The comparison analysis with the Kurtogram,Protrugram,and CVgram-based method shows that the proposed technique has a much better ability for bearing fault detection under strong noise interference.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174139 and 12374330)。
文摘Multidimensional Floquet-driven alignment systems with dynamical symmetry present various exotic phenomena and applications.However,there are challenges in directly characterizing large-spin dynamical symmetry from spectra.Here,we first observe the symmetry-protected selection rules of dynamical high-dimensional parity in a large-spin(F=4)system.We theoretically construct a Floquet-driven alignment system that can be used to reveal high-dimensional spatiotemporal symmetry.In the experiment,the system is implemented in Cs atomic gas subjected to two-dimensional Floquet-modulated magnetic resonance driving.By developing Floquet detection protocols of alignment double-sided spectra,we directly verify symmetry-protected selection rules of dynamical high-dimensional parity for large-spin systems.This work advances the exploration of dynamical symmetry to large spins,and unravels a universal Floquet scheme for the investigation of symmetry-protected selection rules.
文摘In this paper,a Kretschmann configuration based surface plasmon resonance(SPR)sensor is numerically designed using graphene-MoS_(2) hybrid structure TiO_(2)-SiO_(2) nano particles for formalin detection.In this design,the observations of SPR angle versus minimum reflectance and SPR frequency(FSPR)versus maximum transmittance(Tmax)are considered.The chitosan is used as probe legend to perform reaction with the formalin(40%formaldehyde)which acts as target legend.In this paper,both graphene and MoS_(2) are used as biomolecular acknowledgment element(BAE)and TiO_(2) as well as SiO_(2) bilayers is used to improve the sensitivity of the sensor.The numerical results show that the variation of FSPR and SPR angles for inappropriate sensing of formalin is quite insignificant which confirms the absence of formalin.On the other hand,these variations for appropriate sensing are considerably significant that confirm the presence of formalin.At the end of this article,the variation of sensitivity of the proposed biosensor is measured in corresponding to the increment of a refractive index with a refractive index step 0.01 refractive index unit(RIU).In inclusion of TiO_(2)-SiO_(2) bilayers with graphene-MoS_(2),a maximum sensitivity of 85.375%is numerically calculated.
基金supported by NSFC(Nos.21027003, 21235007 and 91117010)Ministry of Science and Technology(No. 2012IM030400) and Chinese Academy of Sciences
文摘Interaction of straight chain alcohol vapors with MOF-199-functionalized films was studied by SPR. The signals had linear relationships with the concentration of alcohols over a wide range from 0 to 70% (v/v) and were reversible in proportional to the chain length, with R2 all above 0.99.
基金supported by the National Natural Science Foundation of China (21325523, 21527811)the Shandong Province Science Foundation for Youths (ZR2016HQ07)the Award for Team Leader Program of Taishan Scholars of Shandong Province, China
文摘Rapid, accurate and sensitive detection of particular DNA sequence is critical in fundamental biomedical research and clinical diagnostics. However, conventional approaches for DNA assay often suffer from cumbersome procedures, long analysis time and insufficient sensitivity. Recently, single-particle detection technology has emerged as a powerful tool in the biosensing area due to its significant advantages of ultrahigh sensitivity, low sample-consumption and rapid analysis time. Especially, the introduction of novel nanomaterials has greatly promoted the development of single-particle detection and its applications for DNA sensing. In this review, we summarize the recent advance in single-particle detection strategies for DNA sensing, and focus mainly on metallic nanoparticle-and semiconductor quantum dot-based single-particle detection. We highlight the emerging trends in this field as well.
基金supported by the National Natural Science Foundation of China(No.61235009)the National Basic Research Programmer of China(No.2013CBA01703)
文摘A hollow-core metal-cladding waveguide(HCMW) optofluidic resonator that works based on a free-space coupling technique is designed. An HCMW can excite ultra-high-order modes(UOMs) at the coupled angle, which can be used as an optofluidic resonator to detect alterations of the epidermal growth factor receptor(EGFR)concentration. Theoretical analysis shows that the UOMs excited in the HCMW have a highly sensitive response to the refractive index(RI) variation of the guiding layer. An EGFR solution with a 0.2 ng/mL alteration is detected, and the RI variation caused by the concentration alteration is about 2.5 × 10^(-3).
基金the Australian Research Council Laureate Fellowship project(FL100100099).
文摘Due to their exceptional optical and magnetic properties,negatively charged nitrogen-vacancy(NV−)centers in nanodiamonds(NDs)have been identified as an indispensable tool for imaging,sensing and quantum bit manipulation.The investigation of the emission behaviors of single NV−centers at the nanoscale is of paramount importance and underpins their use in applications ranging from quantum computation to super-resolution imaging.Here,we report on a spin-manipulated nanoscopy method for nanoscale resolutions of the collectively blinking NV−centers confined within the diffraction-limited region.Using wide-field localization microscopy combined with nanoscale spin manipulation and the assistance of a microwave source tuned to the optically detected magnetic resonance(ODMR)frequency,we discovered that two collectively blinking NV−centers can be resolved.Furthermore,when the collective emitters possess the same ground state spin transition frequency,the proposed method allows the resolving of each single NV−center via an external magnetic field used to split the resonant dips.In spin manipulation,the three-level blinking dynamics provide the means to resolve two NV−centers separated by distances of 23 nm.The method presented here offers a new platform for studying and imaging spin-related quantum interactions at the nanoscale with superresolution techniques.