期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
Monitoring the in vivo siRNA release from lipid nanoparticles based on the fluorescence resonance energy transfer principle 被引量:1
1
作者 Lei Sun Jinfang Zhang +11 位作者 Jing-e Zhou JingWang Zhehao Wang Shenggen Luo Yeying Wang Shulei Zhu Fan Yang Jie Tang Wei Lu Yiting Wang Lei Yu Zhiqiang Yan 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第1期72-85,共14页
The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effect... The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effectively monitored.In this study,based on the fluorescence resonance energy transfer(FRET)principle,a fluorescence dye Cy5-modified survivin siRNA was conjugated to nanogolds(Au-DR-siRNA),which were then wrapped with lipid nanoparticles(LNPs)for monitoring the release behaviour of siRNA in vivo.The results showed that once Au-DR-siRNA was released from the LNPs and cleaved by the Dicer enzyme to produce free siRNA in cells,the fluorescence of Cy5 would change from quenched state to activated state,showing the location and time of siRNA release.Besides,the LNPs showed a significant antitumor effect by silencing the survivin gene and a CT imaging function superior to iohexol by nanogolds.Therefore,this work provided not only an effective method for monitoring the pharmacokinetic behaviour of LNP-based siRNA,but also a siRNA delivery system for treating and diagnosing tumors. 展开更多
关键词 Survivin siRNA Lipid nanoparticles In vivo release Nanogolds Fluorescence resonance energy transfer
下载PDF
A mini review and hypothesis for coronavirus detection using photonics: surface enhanced Raman scattering and fluorescence resonance energy transfer
2
作者 Akshat Dharmeshkumar Modi Austin Tian Yang Akriti Sharma 《Infectious Diseases Research》 2023年第1期10-13,共4页
COVID-19 has devastated numerous nations around the world and has overburdened numerous healthcare systems,which has also caused the loss of livelihoods due to prolonged shutdowns and further led to a cascading effect... COVID-19 has devastated numerous nations around the world and has overburdened numerous healthcare systems,which has also caused the loss of livelihoods due to prolonged shutdowns and further led to a cascading effect on the global economy.COVID-19 infections have an incubation period of 2–7 days,but 40 to 45%of cases are asymptomatic or show mild to moderate respiratory symptoms after the period due to subclinical lung abnormalities,making it more likely to spread the pandemic disease.To restrict the spread of the virus,on-site diagnosis methods that are quicker,more precise,and easily accessible are required.Rapid Antigen Detection Tests and Polymerase Chain Reaction tests are currently the primary methods used to determine the presence of COVID-19 viruses.These tests are typically time-consuming,not accurate,and,more importantly,not available to everyone.Hence,in this review and hypothesis,we proposed equipment that employs the properties of photonics to improve the detection of COVID-19 viruses by taking the advantage of typical binding of coronavirus with angiotensin-converting enzyme 2(ACE2)receptors.This hypothetical model would combine Surface-Enhanced Raman Scattering(SERS)and Fluorescence Resonance Energy Transfer(FRET)to provide great flexibility,high sensitivities,and enhanced accessibility. 展开更多
关键词 COVID-19 CORONAVIRUS ACE2 virus detection PHOTONICS surface-enhanced Raman scattering fluorescence resonance energy transfer
下载PDF
Screening and identification of bioactive compounds from citrus against non-structural protein 3 protease of hepatitis C virus genotype 3a by fluorescence resonance energy transfer assay and mass spectrometry 被引量:1
3
作者 Mahim Khan Waqar Rauf +2 位作者 Fazal-e-Habib Moazur Rahman Mazhar Iqbal 《World Journal of Hepatology》 2020年第11期976-992,共17页
BACKGROUND Hepatitis C virus genotype 3a(HCV G3a)is highly prevalent in Pakistan.Due to the elevated cost of available Food and Drug Administration-approved drugs against HCV,medicinal natural products of potent antiv... BACKGROUND Hepatitis C virus genotype 3a(HCV G3a)is highly prevalent in Pakistan.Due to the elevated cost of available Food and Drug Administration-approved drugs against HCV,medicinal natural products of potent antiviral activity should be screened for the cost-effective treatment of the disease.Furthermore,from natural products,active compounds against vital HCV proteins like non-structural protein 3(NS3)protease could be identified to prevent viral proliferation in the host.AIM To develop cost-effective HCV genotype 3a NS3 protease inhibitors from citrus fruit extracts.METHODS Full-length NS3 without co-factor non-structural protein 4A(NS4A)and codon optimized NS3 protease in fusion with NS4A were expressed in Escherichia coli.The expressed protein was purified by metal ion affinity chromatography and gel filtration.Citrus fruit extracts were screened using fluorescence resonance energy transfer(FRET)assay against the protease and polyphenols were identified as potential inhibitors using electrospray ionization-mass spectrometry(MS)/MS technique.Among different polyphenols,highly potent compounds were screened using molecular modeling approaches and consequently the most active compound was further evaluated against HCV NS4A-NS3 protease domain using FRET assay.RESULTS NS4A fused with NS3 protease domain gene was overexpressed and the purified protein yield was high in comparison to the lower yield of the full-length NS3 protein.Furthermore,in enzyme kinetic studies,NS4A fused with NS3 protease proved to be functionally active compared to full-length NS3.So it was concluded that co-factor NS4A fusion is essential for the purification of functionally active protease.FRET assay was developed and validated by the half maximal inhibitory concentration(IC50)values of commercially available inhibitors.Screening of citrus fruit extracts against the native purified fused NS4A-NS3 protease domain showed that the grapefruit mesocarp extract exhibits the highest percentage inhibition 91%of protease activity.Among the compounds identified by LCMS analysis,hesperidin showed strong binding affinity with the protease catalytic triad having S-score value of-10.98.CONCLUSION Fused NS4A-NS3 protease is functionally more active,which is effectively inhibited by hesperidin from the grapefruit mesocarp extract with an IC50 value of 23.32μmol/L. 展开更多
关键词 Hepatitis C virus genotype 3a Non-structural protein 3 protease Fluorescence resonance energy transfer assay Citrus extract Mass spectrometry HESPERIDIN
下载PDF
Highly-efficient quantitative fluorescence resonance energy transfer measurements based on deep learning
4
作者 Lin Ge Fei Liu Jianwen Luo 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2020年第6期23-35,共13页
Intensity-based quantitative fluorescence resonance energy transfer(FRET)is a technique to measure the distance of molecules in scale of a few nanometers which is far beyond optical diffraction limit.This widely used ... Intensity-based quantitative fluorescence resonance energy transfer(FRET)is a technique to measure the distance of molecules in scale of a few nanometers which is far beyond optical diffraction limit.This widely used technique needs complicated experimental process and manual image analyses to obtain precise results,which take a long time and restrict the application of quantitative FRET especially in living cells.In this paper,a simplified and automatic quanti-tative FRET(saqFRET)method with high efficiency is presented.In saqFRET,photo-activatable acceptor PA-mCherry and optimized excitation wavelength of donor enhanced green fluorescent protein(EGFP)are used to simplify FRET crosstalk elimination.Traditional manual image analyses are time consuming when the dataset is large.The proposed automatic image analyses based on deep learning can analyze 100 samples within 30 s and demonstrate the same precision as manual image analyses. 展开更多
关键词 resonance energy transfer FLUORESCENCE living cells photoactivatable deep network
下载PDF
Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
5
作者 Hong-Yu Tu Ji-Chao Cheng +7 位作者 Gen-Cai Pan Lu Han Bin Duan Hai-Yu Wang Qi-Dai Chen Shu-Ping Xu Zhen-Wen Dai Ling-Yun Pan 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期529-534,共6页
Following the gradual maturation of synthetic techniques for nanomaterials,exciton-plasmon composites have become a research hot-spot due to their controllable energy transfer through electromagnetic fields on the nan... Following the gradual maturation of synthetic techniques for nanomaterials,exciton-plasmon composites have become a research hot-spot due to their controllable energy transfer through electromagnetic fields on the nanoscale.However,most reports ignore fluorescence resonance energy transfer(FRET)under electrostatic repulsion conditions.In this study,the FRET process is investigated in both electrostatic attraction and electrostatic repulsion systems.By changing the Au:quantum dot ratio,local-field induced FRET can be observed with a lifetime of ns and a fast component of hundreds of ps.These results indicate that the intrinsic transfer process can only elucidated by considering both steady and transient state information. 展开更多
关键词 fluorescence resonance energy transfer(FRET) quantum dots excitons-plasmon composites
下载PDF
A SIMPLE METHOD TO CALCULATE RESONANCE ENERGY
6
作者 Lu Bing YUAN Yong DING (Department of Chemistry,Dalian University of Technology,Dalian,116012) 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第1期63-64,共2页
A very simple method to calculate resonance energies of conjugated hydrocarbons by counting carbon numbers was introduced.
关键词 RE A SIMPLE METHOD TO CALCULATE resonance energy
下载PDF
Retraction Note:Screening and identification of bioactive compounds from citrus against non-structural protein 3 protease of hepatitis C virus genotype 3a by fluorescence resonance energy transfer assay and mass spectrometry
7
作者 Mahim Khan Waqar Rauf +2 位作者 Fazal-E-Habib Moazur Rahman Mazhar Iqbal 《World Journal of Hepatology》 2022年第7期1528-1529,共2页
Retraction note:Khan M,Rauf W,Habib F,Rahman M,Iqbal M.Screening and identification of bioactive compounds from citrus against non-structural protein 3 protease of hepatitis C virus genotype 3a by fluorescence resonan... Retraction note:Khan M,Rauf W,Habib F,Rahman M,Iqbal M.Screening and identification of bioactive compounds from citrus against non-structural protein 3 protease of hepatitis C virus genotype 3a by fluorescence resonance energy transfer assay and mass spectrometry.World J Hepatol 2020;12(11):976-992 PMID:33312423 DOI:10.4254/wjh.v12.i11.976.The online version of the original article can be found at https://www.wjgnet.com/1948-5182/full/v12/i11/976.htm. 展开更多
关键词 Non-structural protein 3 Hepatitis C virus Genotype 3a Fluorescence resonance energy transfer
下载PDF
Lifetime-tunable circularly polarized luminescent system based on triplet-to-singlet Förster resonance energy transfer
8
作者 Zhenyi He Zizhao Huang Xiang Ma 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第9期2918-2922,共5页
Circularly polarized luminescence(CPL)materials have received widespread attention due to their remarkable performance and broad applications.However,current CPL material research primarily focuses on tunable color,in... Circularly polarized luminescence(CPL)materials have received widespread attention due to their remarkable performance and broad applications.However,current CPL material research primarily focuses on tunable color,intensity,and reversibility.Constructing CPL with adjustable lifetime remains a significant challenge.Herein,a series of CPL polymeric materials with tunable lifetime were obtained by employing phosphorescent terephthalic acid and chiral organic small molecule R/S-BNAF(a luminescent binaphthol derivative)to copolymerize with acrylamide in different ratios.It was verified that this performance results from the different energy transfer efficiency between luminophores with varying ratios of the monomers for copolymerization.This strategy to realize CPL with tunable lifetime by modulating the energy transfer efficiency will provide a new perspective to broaden the applications of CPL materials. 展开更多
关键词 circularly polarized luminescence tunable lifetime Förster resonance energy transfer room temperature phosphorescence
原文传递
Flexible Förster resonance energy transfer-assisted optical waveguide based on elastic mixed molecular crystals 被引量:1
9
作者 Takumi Matsuo Koki Ikeda Shotaro Hayashi 《Aggregate》 EI CAS 2023年第6期95-100,共6页
Flexible molecular crystal waveguides based on elastic molecular crystals(EMCs)are essential inflexible and compact optical materials.An increased loss coeffi-cientαdue to self-absorption is often a problem in optical ... Flexible molecular crystal waveguides based on elastic molecular crystals(EMCs)are essential inflexible and compact optical materials.An increased loss coeffi-cientαdue to self-absorption is often a problem in optical waveguides(OWGs)offluorescent chemical materials waveguiding photons in active mode.Herein,the development of anthracene-based elastic mixed molecular crystals(EMMCs)is reported for Förster Resonance Energy Transfer(FRET)-assisted OWG.To yield a FRET crystal system based on elastic molecular crystals,1%–5%accep-tor doping forfluorescent molecular crystals of 9,10-dibromoanthracene 1 was successful by selecting the same regioisomer having electron-withdrawing group,9,10-diformylanthracene 2,as a dopant.In addition to conversion to the mixed system,there is a difference in the elastic modulus and hardness in EMC C1 and EMMC C2@1.However,the elastic behaviour was also shown in a few percent doping of the acceptor.Theαvalue of this EMMC,composed of 1 including 1%of 2(0.0077 dB/μm),is much lower than that of EMC composed of 1(0.1258 dB/μm)because of reducing self-absorption in the FRET system.An efficient andflexible OWG was successfully developed by selecting an appropriate acceptor molecule and its low doping rate for mixed crystal construction.This method is a practical approach in various functional andflexible crystal systems. 展开更多
关键词 anthracene elastic mixed molecular crystals flexible Förster resonance energy transfer optical waveguide
原文传递
Spatial effect and resonance energy transfer for the construction of carbon dots composites with long-lived multicolor afterglow for advanced anticounterfeiting
10
作者 Qian Cheng Zhiyuan Chen +4 位作者 Lai Hu Yuwei Song Senqiang Zhu Rui Liu Hongjun Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期208-212,共5页
Carbon dots(CDs)with room-temperature phosphorescence(RTP)have attracted dramatically growing interest in optical functional materials.However,the photoluminescence mechanism of CDs is still a vital and challenging to... Carbon dots(CDs)with room-temperature phosphorescence(RTP)have attracted dramatically growing interest in optical functional materials.However,the photoluminescence mechanism of CDs is still a vital and challenging topic.In this work,we prepared CD-based RTP materials via melting boric acid with various lengths of alkyl amine compounds as precursors.The spatial effect on the structure and the RTP properties of CDs were systematically investigated.With the increase in carbon chain length,the interplanar spacing of the carbon core expands and crosslink-enhanced emission weakens,resulting in a decrease in the phosphorescence intensity and lifetimes.Meanwhile,based on triplet-to-singlet resonance energy transfer,we employed intense and long-lived phosphorescence CDs as the donor and short-lived fluorescent dyes as the acceptor to achieve long-lived multicolor afterglow.By the triplet-to-singlet resonance energy transfer,the afterglow color can change from green to orange.The afterglow lifetimes are more than 0.9 s.Thanks to the outstanding afterglow properties,the composites were used for timeresolved and multiple-color advanced anticounterfeiting.This work will promote the design of multicolor and long-lived afterglow materials and expand their applications. 展开更多
关键词 Carbon dots Spatial effect resonance energy transfer MULTICOLOR Long-lived afterglow Anticounterfeiting
原文传递
Single-particle detection of cholesterol based on the host-guest recognition induced plasmon resonance energy transfer
11
作者 Shu-Min Wang Hui Wang +2 位作者 Wei Zhao Jing-Juan Xu Hong-Yuan Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期222-225,共4页
Plasmon resonance energy transfer(PRET) occurs between the plasmonic nanoparticles(NPs) and organic dyes forming donor-acceptor pairs, which has great potential in quantitative analytical chemistry because of its exce... Plasmon resonance energy transfer(PRET) occurs between the plasmonic nanoparticles(NPs) and organic dyes forming donor-acceptor pairs, which has great potential in quantitative analytical chemistry because of its excellent sensitivity under dark-field microscopy(DFM). Herein, we introduce supramolecular β-cyclodextrin(β-CD) to design a host-guest recognition plasmonic nano-structure modified gold nanoparticles(GNPs), while GNPs and rhodamine molecule(RB) act as the donor and acceptor, respectively. In the presence of the target cholesterol, due to the stronger binding of cholesterol with β-CD, RB molecules are released, inducing the inhibition of PRET, as well as the increase of the scattering intensity of GNPs.The proposed strategy achieves a linear range from 0.02 μmol/L to 2.0 μmol/L for cholesterol detection,and reaches a limit of detection(LOD) of 6.7 nmol/L. This host-guest recognition strategy can easily integrate receptor-donor pair into one nanoparticle, which simplifies the construction of the PRET platform,and further provides an effective approach for PRET-based analytical applications. Afterwards, the proposed PRET strategy was successfully applied for the detection of cholesterol in serum samples with high sensitivity and specificity. The proposed method provides an effective clinically potential means for the detection of cholesterol and other disease-related biomarkers. 展开更多
关键词 Dark field microscopy Localized surface plasmon resonance Plasmon resonance energy transfer GNPs@CD nanoparticles CHOLESTEROL
原文传递
The Clar covering polynomial of hexagonal systems Ⅱ.An application to resonance energy of condensed aromatic hydrocarbons 被引量:3
12
作者 ZHANG, Fu-JiDepartment of Mathematics, Xiamen University, Xiamen, Fujian 361005, ChinaZHANG, He-PingDepartment of Mathematics, Lanzhou University, Lanzhou, Gansu 730000, ChinaLIU, Yu-TingDepartment of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China 《Chinese Journal of Chemistry》 SCIE CAS CSCD 1996年第4期321-325,共5页
The Clar covering polynomial of hexagonal systems is a recently proposed1,2 concept which contains much more topological properties of condensed aromatic hydrocarbons, such as Kekule structure count, Clar number, firs... The Clar covering polynomial of hexagonal systems is a recently proposed1,2 concept which contains much more topological properties of condensed aromatic hydrocarbons, such as Kekule structure count, Clar number, first Herndon number, etc. It is shown that this polynomial can be used for calculating the resonance energy of condensed aromatic hydrocarbons with better accuracy. 展开更多
关键词 resonance energy condensed aromatic hydrocarbon Clar covering polynomial.
原文传递
Plasmon-induced near-field and resonance energy transfer enhancement of photodegradation activity by Au wrapped CuS dual-chain 被引量:2
13
作者 Jinming Ma Xiangfu Liu +2 位作者 Rongwen Wang Feng Zhang Guoli Tu 《Nano Research》 SCIE EI CSCD 2022年第6期5671-5677,共7页
Self-assembled chain-like nanostructures utilizing localized surface plasmon resonance(LSPR)effect could enhance the local electromagnetic field for energy transfer,which provides huge structural advantages for some t... Self-assembled chain-like nanostructures utilizing localized surface plasmon resonance(LSPR)effect could enhance the local electromagnetic field for energy transfer,which provides huge structural advantages for some transmission-related applications such as photocatalysis.In this work,the dual-chain structure of Au chain wrapped CuS(denoted as Au Chain@CuS)was successfully synthesized by the one-step hydrothermal method.Namely,L-cysteine is used as the sulfur source and linking agent,and copper nitrate is the precursor of copper ions,forming the dual-chain driven by 15 nm uniform Au seeds.Transient absorption spectroscopy(TAS)and finite-difference-time-domain(FDTD)simulation exhibited the highly intensive electromagnetic field around the self-assembly chain,the raised formation and transfer rate of electron–hole pairs between the Au chain and surrounding CuS chain.Meanwhile,it shows an excellent photodegradation activity on dye rhodamine B(RhB).Within 1 h under simulated sunlight,the degradation rate reached 98.81%in Au Chain@CuS,which is 2.27 times higher compared to the bare CuS.The enhanced performance is mainly attributed to the near-field enhancement effect induced by LSPR,as well as the benefits of more effective resonance energy transfer(RET).This research comprehensively shows the electromagnetic field in LSPR metal chain is more intensive by order of magnitude relative to the isolated particles.Simultaneously the continuous CuS chain wrapped outside of the LSPR source effectively absorbs and utilizes the plasmonic energy,then promotes the formation of the photo-generated charge,thus increasing the photocatalytic performance.This founding of wrapped coupled-metal dual-chain provides a promising candidate for the highly efficient photocatalysts. 展开更多
关键词 Au Chain@CuS dual-chain localized surface plasmon resonance photodegradation near-field enhancement resonance energy transfer
原文传递
Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems 被引量:2
14
作者 Xiaotong Shen Wei Xu +1 位作者 Jin Ouyang Na Na 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第10期4505-4516,共12页
The applications of fluorescence resonance energy transfer(FRET)are coming to be one of the simplest and most accessible strategy with super-resolved optical measurements.Meanwhile,nanomaterials have become ideal for ... The applications of fluorescence resonance energy transfer(FRET)are coming to be one of the simplest and most accessible strategy with super-resolved optical measurements.Meanwhile,nanomaterials have become ideal for constructing FRET-based system,due to their unique advantages of tunable emission,broad absorption,and long fluorescence(FL)lifetime.The limitations of traditional FRET-based detections,such as the intrinsic FL,auto-FL,as well as the short FL lifetime,could be overcome with nanomaterials.Consequently,numbers of FRET-based nanomaterials have been constructed for precise,sensitive and selective detections in biological systems.They could act as both energy donors and/or acceptors in the optical energy transfer process for biological detections.Some other nanomaterials would not participate in the energy transfer process,but act as the excellent matrix for modifications.The review will be roughly classified into nanomaterial-involved and uninvolved ones.Different detection targets,such as nucleic acids,pathogenic microorganisms,proteins,heavy metal ions,and other applications will be reviewed.Finally,the other biological applications,including environmental evaluation and mechanism studies would also be summarized. 展开更多
关键词 NANOMATERIALS Fluorescence resonance energy transfer Nano-sensors DETECTION Biochemical processes
原文传递
Ultralong organic room-temperature phosphorescence of electrondonating and commercially available host and guest molecules through efficient Förster resonance energy transfer 被引量:2
15
作者 Yeling Ning Junfang Yang +4 位作者 Han Si Haozhong Wu Xiaoyan Zheng Anjun Qin Ben Zhong Tang 《Science China Chemistry》 SCIE EI CSCD 2021年第5期739-744,共6页
Ultralong organic room-temperature phosphorescence(RTP)materials have attracted tremendous attention recently due to their diverse applications.Several ultralong organic RTP materials mimicking the host-guest architec... Ultralong organic room-temperature phosphorescence(RTP)materials have attracted tremendous attention recently due to their diverse applications.Several ultralong organic RTP materials mimicking the host-guest architecture of inorganic systems have been exploited successfully.However,complicated synthesis and high expenditure are still inevitable in these studies.Herein,we develop a series of novel host-guest organic phosphorescence systems,in which all luminophores are electron-rich,commercially available and halogen-atom-free.The maximum phosphorescence efficiency and the longest lifetime could reach 23.6%and 362 ms,respectively.Experimental results and theoretical calculation indicate that the host molecules not only play a vital role in providing a rigid environment to suppress non-radiative decay of the guest,but also show a synergistic effect to the guest through Förster resonance energy transfer(FRET).The commercial availability,facile preparation and unique properties also make these new host-guest materials an excellent candidate for the anti-counterfeiting application.This work will inspire researchers to develop new RTP systems with different wavelengths from commercially available luminophores. 展开更多
关键词 room-temperature phosphorescence host-guest system Förster resonance energy transfer commercial luminophore ANTI-COUNTERFEITING
原文传递
Exploring ratiometric endolysosomal pH nanosensors with hydrophobic indicators responding at the nanoscale interface and multiple fluorescence resonance energy transfers 被引量:1
16
作者 Qinghan Chen Jingying Zhai +2 位作者 Jing Li Yifu Wang Xiaojiang Xie 《Nano Research》 SCIE EI CSCD 2022年第4期3471-3478,共8页
Compared with conventional water-soluble fluorescence probes,pH-sensitive fluorescent nanosensors based on hydrophobic indicators remain largely unexplored.We report here the unique pH response of the nanosensors with... Compared with conventional water-soluble fluorescence probes,pH-sensitive fluorescent nanosensors based on hydrophobic indicators remain largely unexplored.We report here the unique pH response of the nanosensors with a hydrophobic indicator(Ch3,a Nile Blue derivative)in polymeric nanoparticles(NPs).At the aqueous-organic interface of the NPs,spectral overlap and dye accumulation caused significant Förster resonance energy transfer(FRET)not only between the protonated and deprotonated Ch3(hetero-FRET),but also between the protonated and deprotonated Ch3 themselves(homo-FRET).The pH response was simulated according to an interfacial response mechanism and the dynamic range was found to depend on the size of the NPs and dye distribution(Kp).Therefore,adjusting the size of the NPs and the local dye concentration gave rise to a series of dynamic sensing ranges with apparent pKa values from 2.7 to 9.6 based on a single indicator.The nanosensors were successfully delivered to HeLa cells to monitor subcellular pH values in the endosomes and lysosomes.Based on cellular calibrations,the average pH in the organelles were determined to be ca.4.7.Moreover,the pH neutralization process during lysosome membrane permeabilization(LMP)induced by hydrogen peroxide stimulation was also successfully visualized with the nanosensors. 展开更多
关键词 pH nanosensor fluorescence resonance energy transfer(FRET) LYSOSOME interfacial response cell pH chromoionophore
原文传递
Ambient White-Light Afterglow Emission Based on Triplet-to-Singlet Förster Resonance Energy Transfer 被引量:3
17
作者 Huiqiang Gui Zizhao Huang +1 位作者 Zhiyi Yuan Xiang Ma 《CCS Chemistry》 CAS 2022年第1期173-181,共9页
Compared with fluorescent materials,metal-free organic environmental afterglow materials,with larger Stokes shifts,longer lifetimes,higher S/N ratios,and sensitivities,present potential in new applications.However,ach... Compared with fluorescent materials,metal-free organic environmental afterglow materials,with larger Stokes shifts,longer lifetimes,higher S/N ratios,and sensitivities,present potential in new applications.However,achieving air stability and long lifetime organic afterglow systems with tunable emission color still remains a challenge.Herein,we have designed and synthesized luminescent copolymers exhibiting afterglow emission with tunability including white-light afterglow with considerable quantum yield[Commission Internationale de l’Eclairage(CIE)coordinates(0.32,0.33),ΦP=11%]in the amorphous state through the rarely reported triplet-to-singlet Förster resonance energy transfer(TS-FET).Also,they can emit different colors under UV light,including white-light[CIE coordinates(0.31,0.33),ΦPl=27%].This strategy was achieved by copolymerizing two simple-structured single-benzene-based compounds with acrylamide(AM)in different ratios.In addition,these materials can also be employed as a safety ink for paper paving the way for long lifetime luminescent material applications. 展开更多
关键词 triplet-to-singlet Förster resonance energy transfer fluorescence metal-freeorganic afterglow white-light afterglow white photoluminescence
原文传递
A Highly Selective and Sensitive Ratiometric Fluorescent Probe for pH Measurement Based on Fluorescence Resonance Energy Transfer 被引量:1
18
作者 LIANG Fanghui WANG Di +3 位作者 MA Pinyi WANG Xinghua SONG Daqian YU Yong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2015年第5期724-729,共6页
Fluorescein-rhodamine 6G(Flu-Rh) was synthesized and used as the fluorescence probe for pH measurement based on fluorescence resonance energy transfer(FRET). In the probe, fluorescein fluorophore and pH-sensitive ... Fluorescein-rhodamine 6G(Flu-Rh) was synthesized and used as the fluorescence probe for pH measurement based on fluorescence resonance energy transfer(FRET). In the probe, fluorescein fluorophore and pH-sensitive rhodamine 6G hydrazide were used as FRET donor and acceptor, respectively. The values of acidity constant(pKa) and fluorescence quantum yield(Ф) of Flu-Rh were 3.71 and 0.72, respectively. The fluorescence efficiency of Flu-Rh remains almost constant when the pH value of the sample solution changed 10 times in a range of 4.78-7.03 continuously. The present probe is simple and easy-to-use for the pH measurement in acidic media. 展开更多
关键词 Fluorescence resonance energy transfer(FRET) RATIOMETRIC FLUORESCEIN Rhodamine 6G pH
原文传递
Construction of triblock copolymer-gold nanorod composites for fluorescence resonance energy transfer via pH-sensitive allosteric
19
作者 Li Zeng Zhipeng Su +1 位作者 Xingyi Li Shuai Shi 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第12期3131-3134,共4页
To explore the effects of microenvironmental adjustments on fluorescence,a pH-sensitive nanocomposite system based on fluorescence resonance energy transfer(FRET)was constructed.The model system included a modified tr... To explore the effects of microenvironmental adjustments on fluorescence,a pH-sensitive nanocomposite system based on fluorescence resonance energy transfer(FRET)was constructed.The model system included a modified triblock copolymer(polyhistidine-b-polyethylene glycol-b-polycaprolactone)and gold nanoparticles.A near-infrared dye was used as the donor,and spectrally matched gold nanorods,attached after C-terminus modification with α-lipoic acid,were used as the receptor to realize control of the FRET effect over the fluorescence intensity for two polymer configurational changes(i.e.,"folded"and"stretched"states)in response to pH.After synthesis and characterization,we investigated the self-assembly behavior of the system.Analysis by quartz crystal microbalance revealed the pH sensitivity of the polymer,which exhibited"folding"and"stretching"states with changes in pH,providing a structural basis for the FRET effect.Fluorescence spectrophotometry investigations also revealed the regulatory impact of the assembled system on fluorescence. 展开更多
关键词 Fluorescence resonance energy transfer pH response Self-assembled nanoparticle Au nanorod Block copolymer
原文传递
Sensitive electrochemiluminescence resonance energy transfer(ECL-RET) between Ru(bpy)3^2+ and Au nanorod for hydrogen peroxide detection
20
作者 Meisheng Wu Zhiqin Chen +1 位作者 Hengyu Xu Aiping Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第3期410-414,共5页
Here,we developed a novel electrochemiluminescence resonance energy transfer(ECL-RET) approach between Ru(bpy)_3^(2+) and Au nanorods(NRs) for sensitive determination of H_2O_2.Au NRs were synthesized through silver i... Here,we developed a novel electrochemiluminescence resonance energy transfer(ECL-RET) approach between Ru(bpy)_3^(2+) and Au nanorods(NRs) for sensitive determination of H_2O_2.Au NRs were synthesized through silver ion-assisted seed-mediated method which exhibited an obvious absorption peak at about 627 nm.They were modified at glassy carbon electrode(GCE) surface which showed a significant ECL quenching efficiency about 56.5%due to the ECL-RET process.This Au NRs modified electrode was then utilized to measure the concentration of H_2O_2 on the basis of the significant quenching effect of H_2O_2 on Ru(bpy)_3^(2+) ECL.Results demonstrated that the decrement of ECL intensity at Au NRs modified electrode had ~ 6.6-fold enhancement as compared with that at bare electrode. 展开更多
关键词 ELECTROCHEMILUMINESCENCE resonance energy transfer Au NRs
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部