The photoluminescence (PL) characteristics of hybrid β-FeSi2/Si and pure β-FeSi2 films fabricated by pulsed laser deposition at 20 K are investigated. The intensity of the 1.54-μm PL from the former is enhanced, ...The photoluminescence (PL) characteristics of hybrid β-FeSi2/Si and pure β-FeSi2 films fabricated by pulsed laser deposition at 20 K are investigated. The intensity of the 1.54-μm PL from the former is enhanced, but the enhancement vanishes when the excitation wavelength is larger than the widened band gap of Si nanocrystal. Time-resolved PL decay measurements reveal that the lifetime of the photo-excited carriers in the hybrid β-FeSi2/Si film is longer than that in the pure β-FeSi2 film, providing evidence that the PL enhancement results from the resonant charge transfer from nanocrystalline Si to β-FeSi2.展开更多
The resonant charge transfer process for Li+-Li(2s) collision is investigated by the quantum-mechanical molecular orbital close-coupling(QMOCC) method and the two-center atomic-orbital close-coupling(AOCC) meth...The resonant charge transfer process for Li+-Li(2s) collision is investigated by the quantum-mechanical molecular orbital close-coupling(QMOCC) method and the two-center atomic-orbital close-coupling(AOCC) method in an energy range of 1.0 e V/u-104e V/u. Accurate molecular structure data and charge transfer cross sections are given. Both the allelectron model(AEM) and one-electron model(OEM) are used in the QMOCC calculations, and the discrepancies between the two models are analyzed. The OEM calculation can also give a reliable prediction of the cross sections for energies below 1 ke V/u.展开更多
Type-Ⅱband alignment can realize the efficient charge transfer and separation at the semiconductor heterointerface,which results in photoluminescence(PL)quenching.Recently,several researches demonstrated great enhanc...Type-Ⅱband alignment can realize the efficient charge transfer and separation at the semiconductor heterointerface,which results in photoluminescence(PL)quenching.Recently,several researches demonstrated great enhancement of localized PL at the interface of type-Ⅱtwo-dimensional(2D)heterostructure.However,the dominant physical mechanism of this enhanced PL emission has not been well understood.In this work,we symmetrically study the exciton dynamics of type-Ⅱlateral heterostructures of monolayer MoS_(2) and WS_(2) at room temperatures.The strong PL enhancement along the one-dimensional(1D)heterointerface is associated with the trion emission of the WS_(2) shell,while a dramatic PL quenching of neutral exciton is observed on the MoS_(2) core.The enhanced quantum yield of WS2trion emission can be explained by charge-transfer-enhanced photoexcited carrier dynamics,which is facilitated by resonance hole transfer from MoS_(2) side to WS_(2) side.This work sheds light on the 1D exciton photophysics in lateral heterostructures,which has the potential to lead to new concepts and applications of optoelectronic device.展开更多
We propose an effective mechanism to couple superconducting charge and flux qubits by using a quantized nanomechanical resonator. The coupling between the charge and flux qubits can be controlled by the external flux ...We propose an effective mechanism to couple superconducting charge and flux qubits by using a quantized nanomechanical resonator. The coupling between the charge and flux qubits can be controlled by the external flux of the charge qubit. Under the strong coupling limR, an iSWAP gate can be generated by this scheme. The experimental feasibility in our scheme is also presented.展开更多
We perform a kinetically complete measurement on the fragmentation of Coulomb explosion of 1-120 molecules in intense few-cycle linearly and circularly polarized laser fields. Both the fragmentations of 1t203+ and H...We perform a kinetically complete measurement on the fragmentation of Coulomb explosion of 1-120 molecules in intense few-cycle linearly and circularly polarized laser fields. Both the fragmentations of 1t203+ and H204+ reveal the concerted pathway of dissociation. The length of the OH bond prior to the Coulomb explosion of both molecular ions is sensitive to the laser pulse duration and laser intensity. However, the bending angle of H-O-H is less sensitive to the pulse duration and laser intensity. We introduce the mechanism of charge resonance enhanced double ionization to elucidate the triple (or quadruple) dissociative ionization dynamics of H20, in which two electrons are non-adiabatically localized at the protons of the precursor ion H2O^+ (or H2O^2+) and are released simultaneously due to the over barrier ionization in the combined laser field and molecular ionic potential. Such charge resonance enhanced multiple ionization is not suppressed in few-cycle laser fields and elliptically polarized laser fields.展开更多
Wavelength division multiplexing (WDM) is widely used in modern optics and electronics. For future quantum computers, the integration of readout is also vitally important. Here we incorporate an idea of WDM to demon...Wavelength division multiplexing (WDM) is widely used in modern optics and electronics. For future quantum computers, the integration of readout is also vitally important. Here we incorporate an idea of WDM to demon- strate multiplexing readout of charge qubits by using a single integrated on-chip superconducting microwave resonator. Two distant qubits formed by two graphene double quantum dots (DQDs) are simultaneously readout by an interconnected superconducting resonator. This readout device is found to have 2 MHz bandwidth and 1.1 x 10-4 e/x/-H-z charge sensitivity. Different frequency gate-modulations, which are used selectively to change the impedance of the qubits, are applied to different DQDs, which results in separated sidebands in the spectrum. These sidebands enable a multiplexing readout for the multi-qubits circuit. This architecture can largely reduce the amount of detectors and can improve the prospect for scaling-up of semiconductor qubits.展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CB922102 and 2013CB932901)the National Natural Science Foundation of China(Grant No.60976063)the Priority Academic Program Development(PAPD)of Higher Education Institutions of Jiangsu Province and HongKong Research Grants Council(RGC)General Research Funds(GRF)(Grant Nos.CityU 112510 and CityU 112212)
文摘The photoluminescence (PL) characteristics of hybrid β-FeSi2/Si and pure β-FeSi2 films fabricated by pulsed laser deposition at 20 K are investigated. The intensity of the 1.54-μm PL from the former is enhanced, but the enhancement vanishes when the excitation wavelength is larger than the widened band gap of Si nanocrystal. Time-resolved PL decay measurements reveal that the lifetime of the photo-excited carriers in the hybrid β-FeSi2/Si film is longer than that in the pure β-FeSi2 film, providing evidence that the PL enhancement results from the resonant charge transfer from nanocrystalline Si to β-FeSi2.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11179041,11474032,and 11474033)the NSAF(Grant No.U1330117)
文摘The resonant charge transfer process for Li+-Li(2s) collision is investigated by the quantum-mechanical molecular orbital close-coupling(QMOCC) method and the two-center atomic-orbital close-coupling(AOCC) method in an energy range of 1.0 e V/u-104e V/u. Accurate molecular structure data and charge transfer cross sections are given. Both the allelectron model(AEM) and one-electron model(OEM) are used in the QMOCC calculations, and the discrepancies between the two models are analyzed. The OEM calculation can also give a reliable prediction of the cross sections for energies below 1 ke V/u.
基金Project supported by the National Natural Science Foundation of China(Grant No.61804047)the Training Program for the Natural Science Foundation of Henan Normal University,China(Grant No.2017PL02)+2 种基金the Scientific Research Start-up Foundation for Ph D of Chaohu University,China(Grant No.KYQD-2023012)the Natural Science Foundation Henan Province of China(Grant No.232300421236)the High Performance Computing Center(HPCC)of Henan Normal University,China。
文摘Type-Ⅱband alignment can realize the efficient charge transfer and separation at the semiconductor heterointerface,which results in photoluminescence(PL)quenching.Recently,several researches demonstrated great enhancement of localized PL at the interface of type-Ⅱtwo-dimensional(2D)heterostructure.However,the dominant physical mechanism of this enhanced PL emission has not been well understood.In this work,we symmetrically study the exciton dynamics of type-Ⅱlateral heterostructures of monolayer MoS_(2) and WS_(2) at room temperatures.The strong PL enhancement along the one-dimensional(1D)heterointerface is associated with the trion emission of the WS_(2) shell,while a dramatic PL quenching of neutral exciton is observed on the MoS_(2) core.The enhanced quantum yield of WS2trion emission can be explained by charge-transfer-enhanced photoexcited carrier dynamics,which is facilitated by resonance hole transfer from MoS_(2) side to WS_(2) side.This work sheds light on the 1D exciton photophysics in lateral heterostructures,which has the potential to lead to new concepts and applications of optoelectronic device.
文摘We propose an effective mechanism to couple superconducting charge and flux qubits by using a quantized nanomechanical resonator. The coupling between the charge and flux qubits can be controlled by the external flux of the charge qubit. Under the strong coupling limR, an iSWAP gate can be generated by this scheme. The experimental feasibility in our scheme is also presented.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922403the National Natural Science Foundation of China under Grant Nos 11125416,11434002,11121091 and 11134001
文摘We perform a kinetically complete measurement on the fragmentation of Coulomb explosion of 1-120 molecules in intense few-cycle linearly and circularly polarized laser fields. Both the fragmentations of 1t203+ and H204+ reveal the concerted pathway of dissociation. The length of the OH bond prior to the Coulomb explosion of both molecular ions is sensitive to the laser pulse duration and laser intensity. However, the bending angle of H-O-H is less sensitive to the pulse duration and laser intensity. We introduce the mechanism of charge resonance enhanced double ionization to elucidate the triple (or quadruple) dissociative ionization dynamics of H20, in which two electrons are non-adiabatically localized at the protons of the precursor ion H2O^+ (or H2O^2+) and are released simultaneously due to the over barrier ionization in the combined laser field and molecular ionic potential. Such charge resonance enhanced multiple ionization is not suppressed in few-cycle laser fields and elliptically polarized laser fields.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00200the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB01030000the National Natural Science Foundation of China under Grant Nos 11222438,11174267,61306150,11304301 and 91421303
文摘Wavelength division multiplexing (WDM) is widely used in modern optics and electronics. For future quantum computers, the integration of readout is also vitally important. Here we incorporate an idea of WDM to demon- strate multiplexing readout of charge qubits by using a single integrated on-chip superconducting microwave resonator. Two distant qubits formed by two graphene double quantum dots (DQDs) are simultaneously readout by an interconnected superconducting resonator. This readout device is found to have 2 MHz bandwidth and 1.1 x 10-4 e/x/-H-z charge sensitivity. Different frequency gate-modulations, which are used selectively to change the impedance of the qubits, are applied to different DQDs, which results in separated sidebands in the spectrum. These sidebands enable a multiplexing readout for the multi-qubits circuit. This architecture can largely reduce the amount of detectors and can improve the prospect for scaling-up of semiconductor qubits.