BACKGROUND Hepatic steatosis is a very common problem worldwide.AIM To assess the performance of two-and six-point Dixon magnetic resonance(MR)techniques in the detection,quantification and grading of hepatic steatosi...BACKGROUND Hepatic steatosis is a very common problem worldwide.AIM To assess the performance of two-and six-point Dixon magnetic resonance(MR)techniques in the detection,quantification and grading of hepatic steatosis.METHODS A single-center retrospective study was performed in 62 patients with suspected parenchymal liver disease.MR sequences included two-point Dixon,six-point Dixon,MR spectroscopy(MRS)and MR elastography.Fat fraction(FF)estimates on the Dixon techniques were compared to the MRS-proton density FF(PDFF).Statistical tests used included Pearson’s correlation and receiver operating characteristic.RESULTS FF estimates on the Dixon techniques showed excellent correlation(≥0.95)with MRS-PDFF,and excellent accuracy[area under the receiver operating characteristic(AUROC)≥0.95]in:(1)Detecting steatosis;and(2)Grading severe steatosis,(P<0.001).In iron overload,two-point Dixon was not evaluable due to confounding T2*effects.FF estimates on six-point Dixon vs MRS-PDFF showed a moderate correlation(0.82)in iron overload vs an excellent correlation(0.97)without iron overload,(P<0.03).The accuracy of six-point Dixon in grading mild steatosis improved(AUROC:0.59 to 0.99)when iron overload cases were excluded.The excellent correlation(>0.9)between the Dixon techniques vs MRSPDFF did not change in the presence of liver fibrosis(P<0.01).CONCLUSION Dixon techniques performed satisfactorily for the evaluation of hepatic steatosis but with exceptions.展开更多
This review gives a short introduction into the principles of ultrasonic measurement techniques for liquids, using cavity resonators. Guidelines for the resonator design in broad-band ultrasonic stxctroscopy as well a...This review gives a short introduction into the principles of ultrasonic measurement techniques for liquids, using cavity resonators. Guidelines for the resonator design in broad-band ultrasonic stxctroscopy as well as in high-resolution single-frequncy or narrowband applications are presented. Deviations of the field configuration in real cells frtxn that in an ideal resonator are discussed and relations for the mode spectrum of cavity fields are given. Recent resonator measurement procedures and methods of data evaluation are mentioned briefly. Some examples of measurements show the extended usability of ultrasonic resonator techniques in basic science and in a wide range of applications for rrkaterials characterization, in manufacturing processes, as well as in control routines.展开更多
Objective:To investigate the clinical effects of applying the magnetic resonance double mismatch technique to endovascular treatment of acute anterior circulation,large vessel occlusion with cerebral infarction in an ...Objective:To investigate the clinical effects of applying the magnetic resonance double mismatch technique to endovascular treatment of acute anterior circulation,large vessel occlusion with cerebral infarction in an unknown time window.Methods:The research work was carried out in our hospital,the work was carried out from November 2018 to November 2019,the patients with acute anterior circulation large vessel occlusion with cerebral infarction who were treated in our hospital during this period,100 patients,50 patients with an unknown time window and 50 patients with definite time window were selected,and they were named as the experimental and control groups,given different examination methods,were given to investigate the clinical treatment effect.Results:Patients’data on HIHSS score before treatment,the incidence of intracranial hemorrhage and rate of Mrs≤2 rating after 90 days of treatment were not significantly different(P>0.05),which was not meaningful.The differences in data between the two groups concerning HIHSS scores were relatively significant before,and after treatment(P<0.05).Conclusion:The magnetic resonance double mismatch technique will be applied in the endovascular treatment of acute anterior circulation large vessel occlusion with cerebral infarction of unknown time window.展开更多
The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on...The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on maximal overlap discrete wavelet packet transformation (MODWPT) is developed. By the simulation test for soil embedded pipes fault-detection, it is shown that the performance of newly proposed HFRT algorithms is more sensitive to early defects than the traditional HFRT methods based on the Hilbert transform.展开更多
Polarization fluctuation induced noise and backscattering-induced noise are the dominant noises in resonant fiber optic gyroscopes. This Letter proposes a new method to suppress the carrier and backscattering induced ...Polarization fluctuation induced noise and backscattering-induced noise are the dominant noises in resonant fiber optic gyroscopes. This Letter proposes a new method to suppress the carrier and backscattering induced noise by the sideband locking technique. Besides choosing an optimized modulation depth and different clockwise and counterclockwise modulation frequencies, the sideband is locked to the cavity resonance. With the proper modulation frequency, the carrier frequency component locates at a position far away from the resonant frequency, and then it is suppressed by the cavity itself, which can be taken as a bandpass filter. The amplitude of the carrier frequency can be suppressed by 20–25 d B additionally by the cavity and the total intensity suppression ratio can reach 115.74 d B. The backscattering induced noise can be eliminated for the adoption of different frequencies. The method can realize a stable and high suppression ratio without high requirements for parameter accuracy or device performance.展开更多
Breast cancer is the most common malignant tumor that threatens women’s health. Breast magnetic resonance imaging (MRI) is a commonly used method recommended for the diagnosis of breast cancer. Diffusion weighted ima...Breast cancer is the most common malignant tumor that threatens women’s health. Breast magnetic resonance imaging (MRI) is a commonly used method recommended for the diagnosis of breast cancer. Diffusion weighted imaging (DWI) and dynamic enhanced magnetic resonance imaging (DCE-MRI) are now widely used. At present, with the continuous advancement of magnetic resonance technology, Magnetic resonance spectroscopy (MRS), Perfusion weighted imaging (PWI), Positron emission tomography-magnetic resonance imaging (PET-MRI) and so on are gradually being used in clinical practice. Mammography imaging and imaging genomics are hot topics. This article will briefly introduce several functional magnetic resonance techniques and their latest applications.展开更多
The resonator integrated optic gyros(RIOGs) based on the Sagnac effect have gained extensive attention in navigation and guidance systems due to their predominant advantages: high theoretical accuracy and simple in...The resonator integrated optic gyros(RIOGs) based on the Sagnac effect have gained extensive attention in navigation and guidance systems due to their predominant advantages: high theoretical accuracy and simple integration. However, the problems of losing lock and low lock-in accuracy are the bottlenecks, which restrict the development of digital RIOGs. Therefore, a multilevel laser frequency lock-in technique has been proposed in this Letter to address these problems. The experimental results show that lock-in accuracy can be improved one order higher and without losing lock in a variable temperature environment. Then, a digital miniaturized RIOG prototype(18 cm × 18 cm × 20 cm) has been produced, and long-term(1 h) bias stability of 26.6 deg/h is successfully demonstrated.展开更多
The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types ...The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types of cross-sectional neutron-reaction measurements have been performed at Back-n since early 2018.These measurements have shown that a significant number of gamma rays can be transmitted to the experimental stations of Back-n along with the neutron beam.These gamma rays,commonly referred to as in-beam gamma rays,can induce a non-negligible experimental background in neutron-reaction measurements.Studying the characteristics of in-beam gamma rays is important for understanding the experimental background.However,measuring in-beam gamma rays is challenging because most gamma-ray detectors are sensitive to neutrons;thus,discriminating between neutron-induced signals and those from in-beam gamma rays is difficult.In this study,we propose the use of the black resonance filter method and a CeBr_(3) scintillation detector to measure the characteristics of the in-beam gamma rays of Back-n.Four types of black resonance filters,^(181)Ta,^(59)Co,^(nat)Ag,and^(nat)Cd,were used in this measurement.The time-of-flight(TOF)technique was used to select the detector signals remaining in the absorption region of the TOF spectra,which were mainly induced by in-beam gamma rays.The energy distribution and flux of the in-beam gamma rays of Back-n were determined by analyzing the deposited energy spectra of the CeBr_(3) scintillation detector and using Monte Carlo simulations.Based on the results of this study,the background contributions from in-beam gamma rays in neutron-reaction measurements at Back-n can be reasonably evaluated,which is beneficial for enhancing both the experimental methodology and data analysis.展开更多
文摘BACKGROUND Hepatic steatosis is a very common problem worldwide.AIM To assess the performance of two-and six-point Dixon magnetic resonance(MR)techniques in the detection,quantification and grading of hepatic steatosis.METHODS A single-center retrospective study was performed in 62 patients with suspected parenchymal liver disease.MR sequences included two-point Dixon,six-point Dixon,MR spectroscopy(MRS)and MR elastography.Fat fraction(FF)estimates on the Dixon techniques were compared to the MRS-proton density FF(PDFF).Statistical tests used included Pearson’s correlation and receiver operating characteristic.RESULTS FF estimates on the Dixon techniques showed excellent correlation(≥0.95)with MRS-PDFF,and excellent accuracy[area under the receiver operating characteristic(AUROC)≥0.95]in:(1)Detecting steatosis;and(2)Grading severe steatosis,(P<0.001).In iron overload,two-point Dixon was not evaluable due to confounding T2*effects.FF estimates on six-point Dixon vs MRS-PDFF showed a moderate correlation(0.82)in iron overload vs an excellent correlation(0.97)without iron overload,(P<0.03).The accuracy of six-point Dixon in grading mild steatosis improved(AUROC:0.59 to 0.99)when iron overload cases were excluded.The excellent correlation(>0.9)between the Dixon techniques vs MRSPDFF did not change in the presence of liver fibrosis(P<0.01).CONCLUSION Dixon techniques performed satisfactorily for the evaluation of hepatic steatosis but with exceptions.
文摘This review gives a short introduction into the principles of ultrasonic measurement techniques for liquids, using cavity resonators. Guidelines for the resonator design in broad-band ultrasonic stxctroscopy as well as in high-resolution single-frequncy or narrowband applications are presented. Deviations of the field configuration in real cells frtxn that in an ideal resonator are discussed and relations for the mode spectrum of cavity fields are given. Recent resonator measurement procedures and methods of data evaluation are mentioned briefly. Some examples of measurements show the extended usability of ultrasonic resonator techniques in basic science and in a wide range of applications for rrkaterials characterization, in manufacturing processes, as well as in control routines.
文摘Objective:To investigate the clinical effects of applying the magnetic resonance double mismatch technique to endovascular treatment of acute anterior circulation,large vessel occlusion with cerebral infarction in an unknown time window.Methods:The research work was carried out in our hospital,the work was carried out from November 2018 to November 2019,the patients with acute anterior circulation large vessel occlusion with cerebral infarction who were treated in our hospital during this period,100 patients,50 patients with an unknown time window and 50 patients with definite time window were selected,and they were named as the experimental and control groups,given different examination methods,were given to investigate the clinical treatment effect.Results:Patients’data on HIHSS score before treatment,the incidence of intracranial hemorrhage and rate of Mrs≤2 rating after 90 days of treatment were not significantly different(P>0.05),which was not meaningful.The differences in data between the two groups concerning HIHSS scores were relatively significant before,and after treatment(P<0.05).Conclusion:The magnetic resonance double mismatch technique will be applied in the endovascular treatment of acute anterior circulation large vessel occlusion with cerebral infarction of unknown time window.
文摘The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on maximal overlap discrete wavelet packet transformation (MODWPT) is developed. By the simulation test for soil embedded pipes fault-detection, it is shown that the performance of newly proposed HFRT algorithms is more sensitive to early defects than the traditional HFRT methods based on the Hilbert transform.
文摘Polarization fluctuation induced noise and backscattering-induced noise are the dominant noises in resonant fiber optic gyroscopes. This Letter proposes a new method to suppress the carrier and backscattering induced noise by the sideband locking technique. Besides choosing an optimized modulation depth and different clockwise and counterclockwise modulation frequencies, the sideband is locked to the cavity resonance. With the proper modulation frequency, the carrier frequency component locates at a position far away from the resonant frequency, and then it is suppressed by the cavity itself, which can be taken as a bandpass filter. The amplitude of the carrier frequency can be suppressed by 20–25 d B additionally by the cavity and the total intensity suppression ratio can reach 115.74 d B. The backscattering induced noise can be eliminated for the adoption of different frequencies. The method can realize a stable and high suppression ratio without high requirements for parameter accuracy or device performance.
文摘Breast cancer is the most common malignant tumor that threatens women’s health. Breast magnetic resonance imaging (MRI) is a commonly used method recommended for the diagnosis of breast cancer. Diffusion weighted imaging (DWI) and dynamic enhanced magnetic resonance imaging (DCE-MRI) are now widely used. At present, with the continuous advancement of magnetic resonance technology, Magnetic resonance spectroscopy (MRS), Perfusion weighted imaging (PWI), Positron emission tomography-magnetic resonance imaging (PET-MRI) and so on are gradually being used in clinical practice. Mammography imaging and imaging genomics are hot topics. This article will briefly introduce several functional magnetic resonance techniques and their latest applications.
基金supported by the National Natural Science Foundation of China(Nos.51635011,61640601,61571406,and 51727808)the Outstanding Youth Talents Program of Shanxi Province(No.2016002)+1 种基金the Science and Technology on Electronic Test&Measurement Laboratory(No.11010311)the Shanxi "1331 KSC"
文摘The resonator integrated optic gyros(RIOGs) based on the Sagnac effect have gained extensive attention in navigation and guidance systems due to their predominant advantages: high theoretical accuracy and simple integration. However, the problems of losing lock and low lock-in accuracy are the bottlenecks, which restrict the development of digital RIOGs. Therefore, a multilevel laser frequency lock-in technique has been proposed in this Letter to address these problems. The experimental results show that lock-in accuracy can be improved one order higher and without losing lock in a variable temperature environment. Then, a digital miniaturized RIOG prototype(18 cm × 18 cm × 20 cm) has been produced, and long-term(1 h) bias stability of 26.6 deg/h is successfully demonstrated.
基金supported by the Youth Talent Program of China National Nuclear Corporationthe Continuous-Support Basic Scientific Research Project(BJ010261223282)+1 种基金the National Natural Science Foundation of China(No.11790321)the Research and development project of China National Nuclear Corporation。
文摘The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types of cross-sectional neutron-reaction measurements have been performed at Back-n since early 2018.These measurements have shown that a significant number of gamma rays can be transmitted to the experimental stations of Back-n along with the neutron beam.These gamma rays,commonly referred to as in-beam gamma rays,can induce a non-negligible experimental background in neutron-reaction measurements.Studying the characteristics of in-beam gamma rays is important for understanding the experimental background.However,measuring in-beam gamma rays is challenging because most gamma-ray detectors are sensitive to neutrons;thus,discriminating between neutron-induced signals and those from in-beam gamma rays is difficult.In this study,we propose the use of the black resonance filter method and a CeBr_(3) scintillation detector to measure the characteristics of the in-beam gamma rays of Back-n.Four types of black resonance filters,^(181)Ta,^(59)Co,^(nat)Ag,and^(nat)Cd,were used in this measurement.The time-of-flight(TOF)technique was used to select the detector signals remaining in the absorption region of the TOF spectra,which were mainly induced by in-beam gamma rays.The energy distribution and flux of the in-beam gamma rays of Back-n were determined by analyzing the deposited energy spectra of the CeBr_(3) scintillation detector and using Monte Carlo simulations.Based on the results of this study,the background contributions from in-beam gamma rays in neutron-reaction measurements at Back-n can be reasonably evaluated,which is beneficial for enhancing both the experimental methodology and data analysis.