-Bacteria abundance, chlorophyll a, ATP and POC concentrations and respiration rates of microorganisms in the Changjiang Estuary and the plume were determined in July 1986. The high values of bacteria abundance occurr...-Bacteria abundance, chlorophyll a, ATP and POC concentrations and respiration rates of microorganisms in the Changjiang Estuary and the plume were determined in July 1986. The high values of bacteria abundance occurred in the river mouth in association with suspended matter. It is assumed that bacteria were the major contributor to ATP and the main consumer of dissolved oxygen, and that the relationship between ATP and POC was present in that area. In the dilution zone (salinity; 25-30), instead of bacteria, phytoplankton was the major contributor to ATP and respiration rates, due to diatom bloom. Close relationships between Chi a and ATP, and ATP and POC were observed. Contribution of microbial carbon to POC was also estimated.展开更多
[Objective] The aim was to provide references for constructing compound ecological tea gardens. [Method] In an ecological adult-tea garden, teas shaded by Prunus cerasoides, Prunus L., and Litsea pungens were selected...[Objective] The aim was to provide references for constructing compound ecological tea gardens. [Method] In an ecological adult-tea garden, teas shaded by Prunus cerasoides, Prunus L., and Litsea pungens were selected and the teas without shades were taken as a control in order to explore effects of tree shading on photosynthesis, respiration and net photosynthetic intensities. [Result] In a growth cycle of one year, for teas shaded by Prunus cerasoides, Prunus L., and Litsea pungens, respiration intensity was significantly higher than that of the control; net photosynthetic intensity was extremely significant higher; photosynthesis intensity showed none rules. Both of net photosynthetic rate and intensity kept higher in winter of shaded teas. [Conclusion] It is of significance for high-yielding and high-quality teas to reduce respiration consumption and coordinate between photosynthesis and respiration given that tea grows well.展开更多
Ocean colour remote sensing is one of the conventional methods in satellite oceanography used to study the biological response of the upper ocean to the tropical cyclones. This paper aims to study the impact of the Ve...Ocean colour remote sensing is one of the conventional methods in satellite oceanography used to study the biological response of the upper ocean to the tropical cyclones. This paper aims to study the impact of the Very Severe Cyclonic storm PHAILIN, and its consequence on the surface chlorophyll-aconcentration distribution in the Bay of Bengal using Oceansat-2 Ocean Colour Monitor (OCM). The impact of this cyclone on ocean primary productivity has been studied using MODIS-A data. Sea surface temperature (SST) plays an important role in the generation of primary productivity along with the other oceanographic parameters;SST patterns in the Bay of Bengal during the cyclone period were studied. From the analysis, it is observed that the chlorophyll-aconcentration has increased from 1.08 (before) to 7.06 mg/m3 after the cyclone with an SST drop of ~3°C (29.19°C to 26°C). The primary productivity has increased from 410.0506 to 779.9814 mg/C/m2/day after the cyclone. In addition to the above analysis, an attempt has also been made to study the impact of cyclone intensity on the chlorophyll concentration. The study shows that the comparison between cyclone intensity (CI) and chlorophyll concentration shows a positive relationship.展开更多
The chlL gene encoding one component of light-independent (dark) protochlorophyllide oxido reductase (DPOR) was deleted in cyanobacterium Synechocystis sp. PCC 6803 (S.6803). The resulting chlL- mutant lost DPOR activ...The chlL gene encoding one component of light-independent (dark) protochlorophyllide oxido reductase (DPOR) was deleted in cyanobacterium Synechocystis sp. PCC 6803 (S.6803). The resulting chlL- mutant lost DPOR activity. No significant differences of chlorophyll (Chl) content and growth rate were observed between the wild and the mutant strains grown at 50 mE·m2·s1 light intensity for photomixtrophic and photoautotrophic growth. However, differences were observed at 1 mE·m2·s1 light intensity. For photomixtrophic growth, the mutant Chl content was 50% of the wild content with continuous light and 35.7% of the wild content with a 10 h light/ 14 h dark cycle. For photoautotriphic growth, the mutant Chl level was 76.3% of the wild content with continuous light and 63.2% with a 10 h light/ 14 h dark cycle. The results indicate that DPOR contributes to Chl synthesis and increases the growth rate in cyanobacteria phototrophically cultured at 1mE·m2·s1 light intensity. In contrast, the photosynthetic capacity on a per-cell basis of the mutant is 5% higher than that of the wild strain with continuous light and 27% higher than that of the wild strain with a 10 h light/14 h dark cycle at 1 mE·m2·s1 light intensity for photoautotrophic growth. With the low Chl content, the cyanobacteria have the ability to improve their photosynthetic capacity by decreasing the ratio of PSI to PSII by unknown morphological or physiological means.展开更多
Objective:To investigate the effect of the first prone position on arterial blood gas analysis and respiratory parameters of acute respiratory distress syndrome(ARDS)patients with and without COVID.Methods:This study ...Objective:To investigate the effect of the first prone position on arterial blood gas analysis and respiratory parameters of acute respiratory distress syndrome(ARDS)patients with and without COVID.Methods:This study was conducted retrospectively with 22 COVID-ARDS and 22 non-COVID ARDS patients,who were placed in a prone position for at least 16 hours on the first day at the intensive care unit admission,and arterial blood gas analysis was taken in the pre-prone,prone and post-prone periods.Results:PaO2 were significantly increased in the pre-prone vs.prone comparison in both groups,but the increase in the PaO2/FiO2 ratio was not significant.In comparing the pre-prone vs.post-prone PaO2/FiO2 ratios,there was a significant difference only in the non-COVID ARDS group.Conclusions:The improved oxygenation provided by prone positioning is more permanent with the“post-prone effect”in non-COVID ARDS patients.This can be attributed to the differences in the pathogenesis of the two ARDS types.展开更多
文摘-Bacteria abundance, chlorophyll a, ATP and POC concentrations and respiration rates of microorganisms in the Changjiang Estuary and the plume were determined in July 1986. The high values of bacteria abundance occurred in the river mouth in association with suspended matter. It is assumed that bacteria were the major contributor to ATP and the main consumer of dissolved oxygen, and that the relationship between ATP and POC was present in that area. In the dilution zone (salinity; 25-30), instead of bacteria, phytoplankton was the major contributor to ATP and respiration rates, due to diatom bloom. Close relationships between Chi a and ATP, and ATP and POC were observed. Contribution of microbial carbon to POC was also estimated.
文摘[Objective] The aim was to provide references for constructing compound ecological tea gardens. [Method] In an ecological adult-tea garden, teas shaded by Prunus cerasoides, Prunus L., and Litsea pungens were selected and the teas without shades were taken as a control in order to explore effects of tree shading on photosynthesis, respiration and net photosynthetic intensities. [Result] In a growth cycle of one year, for teas shaded by Prunus cerasoides, Prunus L., and Litsea pungens, respiration intensity was significantly higher than that of the control; net photosynthetic intensity was extremely significant higher; photosynthesis intensity showed none rules. Both of net photosynthetic rate and intensity kept higher in winter of shaded teas. [Conclusion] It is of significance for high-yielding and high-quality teas to reduce respiration consumption and coordinate between photosynthesis and respiration given that tea grows well.
文摘Ocean colour remote sensing is one of the conventional methods in satellite oceanography used to study the biological response of the upper ocean to the tropical cyclones. This paper aims to study the impact of the Very Severe Cyclonic storm PHAILIN, and its consequence on the surface chlorophyll-aconcentration distribution in the Bay of Bengal using Oceansat-2 Ocean Colour Monitor (OCM). The impact of this cyclone on ocean primary productivity has been studied using MODIS-A data. Sea surface temperature (SST) plays an important role in the generation of primary productivity along with the other oceanographic parameters;SST patterns in the Bay of Bengal during the cyclone period were studied. From the analysis, it is observed that the chlorophyll-aconcentration has increased from 1.08 (before) to 7.06 mg/m3 after the cyclone with an SST drop of ~3°C (29.19°C to 26°C). The primary productivity has increased from 410.0506 to 779.9814 mg/C/m2/day after the cyclone. In addition to the above analysis, an attempt has also been made to study the impact of cyclone intensity on the chlorophyll concentration. The study shows that the comparison between cyclone intensity (CI) and chlorophyll concentration shows a positive relationship.
基金the National Natural Science Foundation of China (No. 39870064)
文摘The chlL gene encoding one component of light-independent (dark) protochlorophyllide oxido reductase (DPOR) was deleted in cyanobacterium Synechocystis sp. PCC 6803 (S.6803). The resulting chlL- mutant lost DPOR activity. No significant differences of chlorophyll (Chl) content and growth rate were observed between the wild and the mutant strains grown at 50 mE·m2·s1 light intensity for photomixtrophic and photoautotrophic growth. However, differences were observed at 1 mE·m2·s1 light intensity. For photomixtrophic growth, the mutant Chl content was 50% of the wild content with continuous light and 35.7% of the wild content with a 10 h light/ 14 h dark cycle. For photoautotriphic growth, the mutant Chl level was 76.3% of the wild content with continuous light and 63.2% with a 10 h light/ 14 h dark cycle. The results indicate that DPOR contributes to Chl synthesis and increases the growth rate in cyanobacteria phototrophically cultured at 1mE·m2·s1 light intensity. In contrast, the photosynthetic capacity on a per-cell basis of the mutant is 5% higher than that of the wild strain with continuous light and 27% higher than that of the wild strain with a 10 h light/14 h dark cycle at 1 mE·m2·s1 light intensity for photoautotrophic growth. With the low Chl content, the cyanobacteria have the ability to improve their photosynthetic capacity by decreasing the ratio of PSI to PSII by unknown morphological or physiological means.
文摘Objective:To investigate the effect of the first prone position on arterial blood gas analysis and respiratory parameters of acute respiratory distress syndrome(ARDS)patients with and without COVID.Methods:This study was conducted retrospectively with 22 COVID-ARDS and 22 non-COVID ARDS patients,who were placed in a prone position for at least 16 hours on the first day at the intensive care unit admission,and arterial blood gas analysis was taken in the pre-prone,prone and post-prone periods.Results:PaO2 were significantly increased in the pre-prone vs.prone comparison in both groups,but the increase in the PaO2/FiO2 ratio was not significant.In comparing the pre-prone vs.post-prone PaO2/FiO2 ratios,there was a significant difference only in the non-COVID ARDS group.Conclusions:The improved oxygenation provided by prone positioning is more permanent with the“post-prone effect”in non-COVID ARDS patients.This can be attributed to the differences in the pathogenesis of the two ARDS types.