期刊文献+
共找到484篇文章
< 1 2 25 >
每页显示 20 50 100
Estimating Potential Nitrogen Mineralisation Using the Solvita Soil Respiration System
1
作者 Richard L. Haney Elizabeth B. Haney 《Open Journal of Soil Science》 2015年第12期319-323,共5页
Nitrogen (N) mineralisation contributes considerably to crop growth in fertilized and unfertilized fields. It is useful to be able to assess potential N mineralisation to increase fertilizer application efficiency, pr... Nitrogen (N) mineralisation contributes considerably to crop growth in fertilized and unfertilized fields. It is useful to be able to assess potential N mineralisation to increase fertilizer application efficiency, prevent excessive N runoff, and improve environmental system models. The microbes present in soil mineralize N based on many factors, including soil temperature and moisture, tillage, and levels of organic C and N. The measurement of soil’s ability to mineralize N is considered a good indicator of soil quality. Many methods have been developed to estimate N mineralisation in the laboratory and field. The 7-day anaerobic N mineralisation method developed in the 1960’s is considered reliable and is often used to compare new N-mineralisation testing methods. This study examines the use of soil CO2 evolution as determined using the Solvita Soil Respiration System (Solvita) for estimating N mineralisation by comparing it directly to the anaerobic N mineralisation test. Measured CO2 using Solvita was strongly correlated with anaerobic N mineralisation (r2 = 0.82). Results indicate that the Solvita Soil Respiration System can be used to rapidly assess soil respiration and relative N mineralisation potential in any given soil and is considerably faster and easier to perform in a laboratory setting than the anaerobic N mineralisation test. 展开更多
关键词 ANAEROBIC N NITROGEN Mineralisation SOIL respiration
下载PDF
Spatiotemporal Variability and Environmental Controls of Temperature Sensitivity of Ecosystem Respiration across the Tibetan Plateau
2
作者 Danrui SHENG Xianhong MENG +8 位作者 Shaoying WANG Zhaoguo LI Lunyu SHANG Hao CHEN Lin ZHAO Mingshan DENG Hanlin NIU Pengfei XU Xiaohu WEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1821-1842,共22页
Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of... Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of R_(e)(Q_(10)).However,little is known about the patterns and controlling factors of Q_(10)on the plateau,impeding the comprehension of the intensity of terrestrial carbon-climate feedbacks for these sensitive and vulnerable ecosystems.Here,we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of Q_(10)values in diverse climate zones and ecosystems,and further explore the relationships between Q_(10)and environmental factors.Moreover,structural equation modeling was utilized to identify the direct and indirect factors predicting Q_(10)values during the annual,growing,and non-growing seasons.The results indicated that the estimated Q_(10)values were strongly dependent on temperature,generally,with the average Q_(10)during different time periods increasing with air temperature and soil temperature at different measurement depths(5 cm,10 cm,20 cm).The Q_(10)values differentiated among ecosystems and climatic zones,with warming-induced Q_(10)declines being stronger in colder regions than elsewhere based on spatial patterns.NDVI was the most cardinal factor in predicting annual Q_(10)values,significantly and positively correlated with Q_(10).Soil temperature(Ts)was identified as the other powerful predictor for Q_(10),and the negative Q_(10)-Ts relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming.Note that the interpretations of the effect of soil moisture on Q_(10)were complicated,reflected in a significant positive relationship between Q_(10)and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season.These findings are conducive to improving our understanding of alpine grassland ecosystem carbon-climate feedbacks under warming climates. 展开更多
关键词 carbon cycle eddy covariance measurements ecosystem respiration Q_(10)value Tibetan Plateau climate change
下载PDF
Long-term thinning decreases the contribution of heterotrophic respiration to soil respiration in subalpine plantations
3
作者 Longfei Chen Zhibin He +7 位作者 Wenzhi Zhao Xi Zhu Qin Shen Mingdan Song Zhengpeng Li Junqia Kong Shuping Yang Yuan Gao 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期189-204,共16页
Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicult... Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicultural practice,the long-term impacts of thinning on R_(S) and its heterotrophic and autotrophic respiration components(R_(h) and Ra,respectively)in subalpine plantations are poorly understood,espe-cially in winter.A 3-year field observation was carried out with consideration of winter CO_(2) efflux in middle-aged sub-alpine spruce plantations in northwestern China.A trench-ing method was used to explore the long-term impacts of thinning on Rs,Rn and R_(a).Seventeen years after thinning,mean annual Rs,Rn and R_(a) increased,while the contribu-tion of R_(h) to R_(s) decreased with thinning intensity.Thinning significantly decreased winter R,because of the reduction in R_(n) but had no significant effect on Ra.The temperature sensitivity(Q_(10))of R_(h) and R_(a) also increased with thinning intensity,with lower Q_(10) values for R_(h)(2.1-2.6)than for Ra(2.4-2.8).The results revealed the explanatory variables and pathways related to R_(n) and R_(a) dynamics.Thinning increased soil moisture and nitrate nitrogen(NO_(3)^(-)-N),and the enhanced nitrogen and water availability promoted R_(h) and R_(a) by improving fine root biomass and microbial activity.Our results highlight the positive roles of NO_(3)^(-)-N in stimulating R_(s) components following long-term thinning.Therefore,applications of nitrogen fertilizer are not recommended while thinning subalpine spruce plantations from the perspective of reducing soil CO_(2) emissions.The increased Q_(10) values of R_(s) components indicate that a large increase in soil CO_(2) emissions would be expected following thinning because of more pronounced climate warming in alpineregions. 展开更多
关键词 Heterotrophic respiration Autotrophic respiration Long-term thinning impacts Cold seasons Subalpine plantations Temperature sensitivity
下载PDF
Determination of respiration, gross nitrification and denitrification in soil profile using BaPS system 被引量:14
4
作者 CHEN Shu-tao HUANG Yao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第5期937-943,共7页
A facility of BaPS (Barometric Process Separation) was used to determine soil respiration, gross nitrification and denitrification in a winter wheat field with depths of 0-7, 7--14 and 14-21 cm. N2O production was d... A facility of BaPS (Barometric Process Separation) was used to determine soil respiration, gross nitrification and denitrification in a winter wheat field with depths of 0-7, 7--14 and 14-21 cm. N2O production was determined by a gas chromatograph. Crop root mass and relevant soil parameters were measured. Results showed that soil respiration and gross nitrification decreased with the increase of soil depth, while denitrification did not change significantly. In comparison with no-plowing plot, soil respiration increased significantly in plowing plot, especially in the surface soil of 0-7 cm, while gross nitrification and denitrification rates were not affected by plowing. Cropping practice in previous season was found to affect soil gross nitrification in the following wheat-growing season. Higher gross nitrification rate occurred in the filed plot with preceding crop of rice compared with that of maize for all the three depths of 0-7, 7-14 and 14-21 cm. A further investigation indicated that the nitrification for all the cases accounted for about 76% of the total nitrogen transformation processes of nitrification and denitrification and the N2O production correlated with nitrification significantly, suggesting that nitrification is a key process of soil N2O production in the wheat field. In addition, the variations of soil respiration and gross nitrification were exponentially dependent on root mass (p〈0.00l). 展开更多
关键词 soil respiration gross nitrification DENITRIFICATION Barometric Process Separation (BaPS)
下载PDF
Spatio-Temporal Effect on Soil Respiration in Fine-Scale Patches in a Desert Ecosystem 被引量:5
5
作者 S. PEN-MOURATOV M. RAKHIMBAEV Y. STEINBERGER 《Pedosphere》 SCIE CAS CSCD 2006年第1期1-9,共9页
Soil organisms in terrestrial systems are unevenly distributed in time and space, and often aggregated. Spatiotemporal patchiness in the soil environment is thought to be crucial for the maintenance of soil biodiversi... Soil organisms in terrestrial systems are unevenly distributed in time and space, and often aggregated. Spatiotemporal patchiness in the soil environment is thought to be crucial for the maintenance of soil biodiversity, providing diverse microhabitats tightly interweaving with resource partitioning. Determination of a "scale unit" to help understand ecological processes has become one of the important and most debatable problems in recent years. A fieldwork was carried out in the northern Negev Desert highland, Israel to determine the influence of fine-scale landscape patch moisture heterogeneity on biogeochemical variables and microbial activity linkage in a desert ecosystem. The results showed that the spatio-temporal patchiness of soil moisture to which we attribute influential properties, was found to become more heterogenic with the decrease in soil moisture availability (from 8.2 to 0.4 g kg^-1) toward the hot, dry seasons, with coefficient of variation (CV) change amounting to 66.9%. Spatio-temporal distribution of organic matter (OM) and total soluble nitrogen (TSN) was found to be relatively uniformly distributed throughout the wet seasons (winter and spring), with increase of relatively high heterogeneity toward the dry seasons (from 0.25% to 2.17% for OM, and from 0 to 10.2 mg kg^-1 for TSN) with CV of 47.4% and 99.7% for OM and TSN, respectively. Different spatio-temporal landscape patterns were obtained for Ca (CV = 44.6%), K (CV = 34.4%), and Na (CV = 92%) ions throughout the study period. CO2 evolution (CV = 48.6%) was found to be of lower heterogeneity (varying between 2 and 39 g CO2-C g^-1 dry soil h^-1) in the moist seasons, e.g., winter and spring, with lower values of respiration coupled with high heterogeneity of Na^+ and low levels of TSN and organic matter content, and with more homogeneity in the dry seasons (varying between 1 and 50 g CO2-C g^-1 dry soil h^-1). Our results elucidate the heterogeneity and complexity of desert system habitats affecting soil biota activity. 展开更多
关键词 DESERT microbial respiration PATCHINESS small-scale habitat soil
下载PDF
Notes on the forest soil respiration measurement by a Li-6400 system 被引量:4
6
作者 WANGHui-Mei ZUYuan-Gang +1 位作者 WANGWen-Jie KoikeTakayoshi 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第2期132-136,共5页
The correct method used in forest soil respiration measurement by Li-6400 is a premise of data quality control. According to the study in a larch plantation, collars should be inserted at 12 hours in advance to effici... The correct method used in forest soil respiration measurement by Li-6400 is a premise of data quality control. According to the study in a larch plantation, collars should be inserted at 12 hours in advance to efficiently reduce the influence of CO2 spring-out.Moreover, collar insertion depth substantially affected soil respiration measurement, i.e. when collar was shallowly inserted into soil,transversal gas diffusion and the CO2 re-spring-out caused by unstable collars in the measurement could lead to overestimating soil respiration rate; however, when collar was deeply inserted into soil, root respiration decline caused by root-cut and the most active respiratory of the surface soil separated by the inserted collars could lead to underestimating soil respiration rate. Furthermore, an error less than 5% could be guaranteed in typical sunny day if the target [CO2] was set to the mean value of ambient [CO2] in most time of the day, but it should be carefully set in early morning and late afternoon according to changing ambient [CO2]. This protocol of measurement is useful in real measurement. 展开更多
关键词 li-6400 soil respiration collar insertion depth CO_2 spring-out effect gas transversal diffusion factory parameter selection
下载PDF
Effects of Intercropping and Shading Systems on Tea Photosynthesis and Respiration 被引量:5
7
作者 赵甜甜 刘顺航 +2 位作者 严生积 李勇 胡琴芬 《Agricultural Science & Technology》 CAS 2016年第10期2225-2227,共3页
[Objective] The aim was to provide references for constructing compound ecological tea gardens. [Method] In an ecological adult-tea garden, teas shaded by Prunus cerasoides, Prunus L., and Litsea pungens were selected... [Objective] The aim was to provide references for constructing compound ecological tea gardens. [Method] In an ecological adult-tea garden, teas shaded by Prunus cerasoides, Prunus L., and Litsea pungens were selected and the teas without shades were taken as a control in order to explore effects of tree shading on photosynthesis, respiration and net photosynthetic intensities. [Result] In a growth cycle of one year, for teas shaded by Prunus cerasoides, Prunus L., and Litsea pungens, respiration intensity was significantly higher than that of the control; net photosynthetic intensity was extremely significant higher; photosynthesis intensity showed none rules. Both of net photosynthetic rate and intensity kept higher in winter of shaded teas. [Conclusion] It is of significance for high-yielding and high-quality teas to reduce respiration consumption and coordinate between photosynthesis and respiration given that tea grows well. 展开更多
关键词 Tea tree INTERCROPPING SHADING Photosynthetic intensity respiration intensity Net photosynthetic rate
下载PDF
Effects of converting natural grasslands into planted grasslands on ecosystem respiration: a case study in Inner Mongolia, China 被引量:2
8
作者 ZHANG Meng LI Xiaobing +3 位作者 WANG Hong DENG Fei LI Xu MI Xue 《Journal of Arid Land》 SCIE CSCD 2017年第1期38-50,共13页
With increasingly intensifying degradation of natural grasslands and rapidly increasing demand of high quality forages, natural grasslands in China have been converted into planted grasslands at an unprecedented rate ... With increasingly intensifying degradation of natural grasslands and rapidly increasing demand of high quality forages, natural grasslands in China have been converted into planted grasslands at an unprecedented rate and the magnitude of the conversion in Inner Mongolia is among the national highest where the areal extent of planted grasslands ranks the second in China. Such land-use changes(i.e., converting natural grasslands into planted grasslands) can significantly affect carbon stocks and carbon emissions in grassland ecosystems. In this study, we analyzed the effects of converting natural grasslands into planted grasslands(including Medicago sativa, Elymus cylindricus, and M. sativa+E. cylindricus) on ecosystem respiration(F(eco)) in Inner Mongolia of China. Diurnal F(eco) and its components(i.e., total soil respiration(F(ts)), soil heterotrophic respiration(F(sh)) and vegetation autotrophic respiration(F(va))) were measured in 2012(27 July to 5 August) and 2013(18 July to 25 July) in the natural and planted grasslands. Meteorological data, aboveground vegetation data and soil data were simultaneously collected to analyze the relationships between respiration fluxes and environmental factors in those grasslands. In 2012, the daily mean F(eco) in the M. sativa grassland was higher than that in the natural grassland, and the daily mean F(va) was higher in all planted grasslands(i.e., M. sativa, E. cylindricus, and M. sativa+E. cylindricus) than in the natural grassland. In contrast, the daily mean F(ts) and F(sh) were lower in all planted grasslands than in the natural grassland. In 2013, the daily mean F(eco), F(ts) and F(va) in all planted grasslands were higher than those in the natural grassland, and the daily mean F(sh) in the M. sativa+E. cylindricus grassland was higher than that in the natural grassland. The two-year experimental results suggested that the conversion of natural grasslands into planted grasslands can generally increase the F(eco) and the increase in F(eco) is more pronounced when the plantation becomes more mature. The results also indicated that F(sh) contributed more to F(eco) in the natural grassland whereas F(va) contributed more to F(eco) in the planted grasslands. The regression analyses show that climate factors(air temperature and relative humidity) and soil properties(soil organic matter, soil temperature, and soil moisture) strongly affected respiration fluxes in all grasslands. However, our observation period was admittedly too short. To fully understand the effects of such land-use changes(i.e., converting natural grasslands into planted grasslands) on respiration fluxes, longer-term observations are badly needed. 展开更多
关键词 natural grasslands planted grasslands ecosystem respiration soil respiration vegetation autotrophicrespiration Inner Mongoia
下载PDF
Human Respiration Rate Estimation Using Ultra-wideband Distributed Cognitive Radar System 被引量:2
9
作者 Predrag Rapajic 《International Journal of Automation and computing》 EI 2008年第4期325-333,共9页
It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare,rescue,and security applications.In this paper,we first present... It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare,rescue,and security applications.In this paper,we first present a multi-ray propagation model for UWB signal,which is traveling through the human thorax and is reflected on the air/dry-skin/fat/muscle interfaces,A geometry-based statistical channel model is then developed for simulating the reception of UWB signals in the indoor propagation environment.This model enables replication of time-varying multipath profiles due to the displacement of a human chest.Subsequently, a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate.The analytical framework can serve as a basis in the planning and evaluation of future rheasurement programs.We also provide a case study on how the antenna beamwidth affects the estimation of respiration rate based on the proposed propagation models and system architecture. 展开更多
关键词 Medical and patient monitoring sensing technologies and signal processing vital sign ULTRA-WIDEBAND distributed cog-nitive radar respiration rate estimation.
下载PDF
The weak effects of fencing on ecosystem respiration,CH4,and N2O fluxes in a Tibetan alpine meadow during the growing season 被引量:1
10
作者 YiGang Hu ZhenHua Zhang +3 位作者 ShiPing Wang ZhiShan Zhang Yang Zhao ZengRu Wang 《Research in Cold and Arid Regions》 CSCD 2017年第6期642-655,共14页
Fencing is the most common land-management practice to protect grassland degradation from livestock overgrazing on the Tibetan Plateau. However, it is unclear whether fencing reduces CO_2, CH_4, and N_2O emission. Her... Fencing is the most common land-management practice to protect grassland degradation from livestock overgrazing on the Tibetan Plateau. However, it is unclear whether fencing reduces CO_2, CH_4, and N_2O emission. Here, we selected four vegetation types of alpine meadow(graminoid, shrub, forb, and sparse vegetation) to determine fencing effects on ecosystem respiration(Re), CH_4, and N_2O fluxes during the growing season. Despite increased average monthly ecosystem respiration(Re) for fenced graminoid vegetation at the end of the growing season, there was no significant difference between grazing and fencing across all vegetation types. Fencing significantly reduced average CH_4 uptake by about 50% in 2008 only for forb vegetation and increased average N_2O release for graminoid vegetation by 38% and 48% in 2008 and 2009,respectively. Temperature, moisture, total organic carbon, C/N, nitrate, ammonia, and/or bulk density of soil, as well as above-and belowground biomass, explained 19%~71% and 6%~33% of variation in daily and average Re and CH_4 fluxes across all vegetation types, while soil-bulk density explained 27% of variation in average N_2O fluxes. Stepwise regression showed that soil temperature and soil moisture controlled average Re, while soil moisture and bulk density controlled average CH_4 fluxes. These results indicate that abiotic factors control Re, CH_4, and N_2O fluxes; and grazing exclusion has little effect on reducing their emission—implying that climatic change rather than grazing may have a more important influence on the budgets of Re and CH_4 for the Tibetan alpine meadow during the growing season. 展开更多
关键词 FENCING ecosystem respiration methane nitrous oxide TIBETAN ALPINE MEADOW
下载PDF
Spatial Variations of Soil Respiration in Arid Ecosystems 被引量:1
11
作者 Gang Liu Rei Sonobe Quan Wang 《Open Journal of Ecology》 2016年第4期192-205,共14页
Soil respiration releases a major carbon flux back to atmosphere and thus plays an important role in global carbon cycling. Soil respiration is well known for its significant spatial variation in terrestrial ecosystem... Soil respiration releases a major carbon flux back to atmosphere and thus plays an important role in global carbon cycling. Soil respiration is well known for its significant spatial variation in terrestrial ecosystems, especially in fragile ecosystems of arid land, where vegetation is distributed sparsely and the climate changes dramatically. In this study, soil respiration in three typical arid ecosystems: desert ecosystem (DE), desert-farmland transition ecosystem (TE) and farmland ecosystem (FE) in an arid area of northwestern China were studied for their spatial variations in 2012 and 2013. Along with soil respiration (SR), soil surface temperature (ST), soil moisture (SM) and soil electrical conductivity (ECb) were also recorded to investigate the spatial variations and the correlations among them. The results revealed that averaged soil respiration rate was much lower in DE than those in TE and FE. No single factor could adequately explain the variation of soil respiration, except a negative relationship between soil temperature and soil respiration in FE (P < 0.05). Geostatistical analysis showed that the spatial heterogeneity of soil respiration in DE was insignificant but notably in both TE and FE, especially in FE, which was mainly attributed to the different vegetation or soil moisture characteristics in the three ecosystems. The results obtained in this study will help to provide a better understanding on spatial variations of soil respiration and soil properties in arid ecosystems and also on macroscale carbon cycling evaluations. 展开更多
关键词 Soil respiration Spatial Variation Arid Ecosystems GEOSTATISTICS TEMPERATURE MOISTURE
下载PDF
Moso bamboo expansion decreased soil heterotrophic respiration but increased arbuscular mycorrhizal mycelial respiration in a subtropical broadleaved forest 被引量:1
12
作者 Wenhao Jin Jiaying Tu +7 位作者 Qifeng Wu Liyuan Peng Jiajia Xing Chenfei Liang Shuai Shao Junhui Chen Qiufang Xu Hua Qin 《Forest Ecosystems》 SCIE CSCD 2023年第3期337-347,共11页
Moso bamboo(Phyllostachys Pubescens)expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China,which will likely have significant... Moso bamboo(Phyllostachys Pubescens)expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China,which will likely have significant impacts on soil respiration.However,there is still limited information on how Moso bamboo expansion changes soil respiration components and their linkage with microbial community composition and activity.Based on a mesh exclusion method,soil respirations derived from roots,arbuscular mycorrhizal(AM)mycelium,and free-living microbes were investigated in a pure Moso bamboo forest(expanded),an adjacent broadleaved forest(nonexpanded),and a mixed bamboo-broadleaved forest(expanding).Our results showed that bamboo expansion decreased the cumulative CO_(2)effluxes from total soil respiration,root respiration and soil heterotrophic respiration(by 19.01%,30.34%,and 29.92%on average),whereas increased those from AM mycelium(by 78.67%in comparison with the broadleaved forests).Bamboo expansion significantly decreased soil organic carbon(C)content,bacterial and fungal abundances,and enzyme activities involved in C,N and P cycling whereas enhanced the interactive relationships among bacterial communities.In contrast,the ingrowth of AM mycelium increased the activities ofβ-glucosidase and N-acetyl-β-glucosaminidase and decreased the interactive relationships among bacterial communities.Changes in soil heterotrophic respiration and AM mycelium respiration had positive correlations with soil enzyme activities and fungal abundances.In summary,our findings suggest that bamboo expansion decreased soil heterotrophic respiration by decreasing soil microbial activity but increased the contribution of AM mycelial respiration to soil C efflux,which may potentially increase soil C loss from AM mycelial pathway. 展开更多
关键词 Bamboo expansion Soil respiration Soil organic carbon Plant C allocation Arbuscular mycorrhizal fungi
下载PDF
A systematic review of occupational exposure to respirable coal mine dust(RCMD)in the U.S.mining industry 被引量:1
13
作者 Younes Shekarian Elham Rahimi +1 位作者 Mohammad Rezaee Pedram Roghanchi 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期32-44,共13页
Cumulative inhalation of respirable coal mine dust(RCMD)can lead to severe lung diseases,including coal worker's pneu-moconiosis(CWP),silicosis,mixed dust pneumoconiosis,dust-related diffuse fibrosis(DDF),and prog... Cumulative inhalation of respirable coal mine dust(RCMD)can lead to severe lung diseases,including coal worker's pneu-moconiosis(CWP),silicosis,mixed dust pneumoconiosis,dust-related diffuse fibrosis(DDF),and progressive massive fibrosis(PMF).Statistics from the number of reported cases showed a significant decrease in the progression of respiratory diseases in the 1990s.However,an unexpected increase in the number of CWP cases was reported in the late 1990s.To date,there has been no comprehensive systematic review to assess all contributing factors to the resurgence of CWP cases.This study aims to investigate the effects of various mining parameters on the prevalence of CWP in coal mines.A systematic review using the preferred reporting items for systematic reviews and meta-analysis(PRISMA)method was conducted to investigate the health effects of RCMD exposure and identify the factors that may contribute to the recent resurgence of CWP cases.The systematic review yielded a total of 401 papers,which were added to the database.The total number of 148 and 208 papers were excluded from the database in the process of screening and eligibility,respectively.Then,18 papers were considered for data selection and full-text assessment.The review revealed that factors including geographic location,mine size,mining operation type,coal-seam thickness,coal rank,changes in mining practices,technology advancement,and engi-neering dust control practices are contributing to the recent resurgence of CWP among coal workers.However,the evidence for root causes is limited owing to the methodological constraints of the studies;therefore,further detailed studies are needed. 展开更多
关键词 Respirable coal mine dust systematic review Coal worker's pneumoconiosis Respiratory diseases Exposure limit Occupational exposure
下载PDF
Warming Changed Soil Respiration Dynamics of Alpine Meadow Ecosystem on the Tibetan Plateau
14
作者 Junfeng Wang Ziqiang Yuan +1 位作者 Qingbai Wu Rashad Rafique 《Journal of Environmental & Earth Sciences》 2019年第2期7-17,共11页
Alpine meadow system underlain by permafrost on the Tibetan Plateau contains vast soil organic carbon and is sensitive to global warming.However,the dynamics of annual soil respiration(Rs)under long-term warming and t... Alpine meadow system underlain by permafrost on the Tibetan Plateau contains vast soil organic carbon and is sensitive to global warming.However,the dynamics of annual soil respiration(Rs)under long-term warming and the determined factors are still not very clear.Using opentop chambers(OTC),we assessed the effects of two-year experimental warming on the soil CO2 emission and the Q10 value(temperature sensitivity coefficient)under different warming magnitudes.Our study showed that the soil CO2 efflux rate in the warmed plots were 1.22 and 2.32 times higher compared to that of controlled plots.However,the Q10 value decreased by 45.06%and 50.34%respectively as the warming magnitude increased.These results suggested that soil moisture decreasing under global warming would enhance soil CO2 emission and lower the temperature sensitivity of soil respiration rate of the alpine meadow ecosystem in the permafrost region on the Tibetan Plateau.Thus,it is necessary to take into account the combined effect of ground surface warming and soil moisture decrease on the Rs in order to comprehensively evaluate the carbon emissions of the alpine meadow ecosystem,especially in short and medium terms. 展开更多
关键词 Soil respiration Alpine meadow Experimental warming Open-top chamber
下载PDF
Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe
15
作者 MA Jinpeng PANG Danbo +4 位作者 HE Wenqiang ZHANG Yaqi WU Mengyao LI Xuebin CHEN Lin 《Journal of Arid Land》 SCIE CSCD 2023年第9期1084-1106,共23页
Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the ef... Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the effects of changes in precipitation and N addition on soil respiration in the upper soil layer in desert steppes.In this study,we conducted a control experiment that involved a field simulation from July 2020 to December 2021 in a desert steppe in Yanchi County,China.Specifically,we measured soil parameters including soil temperature,soil moisture,total nitrogen(TN),soil organic carbon(SOC),soil microbial biomass carbon(SMBC),soil microbial biomass nitrogen(SMBN),and contents of soil microorganisms including bacteria,fungi,actinomyces,and protozoa,and determined the components of soil respiration including soil respiration with litter(RS+L),soil respiration without litter(RS),and litter respiration(RL)under short-term changes in precipitation(control,increased precipitation by 30%,and decreased precipitation by 30%)and N addition(0.0 and 10.0 g/(m^(2)·a))treatments.Our results indicated that short-term changes in precipitation and N addition had substantial positive effects on the contents of TN,SOC,and SMBC,as well as the contents of soil actinomyces and protozoa.In addition,N addition significantly enhanced the rates of RS+L and RS by 4.8%and 8.0%(P<0.05),respectively.The increase in precipitation markedly increased the rates of RS+L and RS by 2.3%(P<0.05)and 5.7%(P<0.001),respectively.The decrease in precipitation significantly increased the rates of RS+L and RS by 12.9%(P<0.05)and 23.4%(P<0.001),respectively.In contrast,short-term changes in precipitation and N addition had no significant effects on RL rate(P>0.05).The mean RL/RS+L value observed under all treatments was 27.63%,which suggested that RL is an important component of soil respiration in the desert steppe ecosystems.The results also showed that short-term changes in precipitation and N addition had significant interactive effects on the rates of RS+L,RS,and RL(P<0.001).In addition,soil temperature was the most important abiotic factor that affected the rates of RS+L,RS,and RL.Results of the correlation analysis demonstrated that the rates of RS+L,RS,and RL were closely related to soil temperature,soil moisture,TN,SOC,and the contents of soil microorganisms,and the structural equation model revealed that SOC and SMBC are the key factors influencing the rates of RS+L,RS,and RL.This study provides further insights into the characteristics of soil C emissions in desert steppe ecosystems in the context of climate change,which can be used as a reference for future related studies. 展开更多
关键词 soil respiration litter respiration nitrogen deposition soil carbon soil microorganisms climate change desert steppe ecosystems
下载PDF
Transcriptome Analysis Reveals New Insights into the Respiration Metabolism Mechanism of Different Feeding Rations of Sea Cucumber(Apostichopus japonicus)
16
作者 MEI Yaoping HOU Zhishuai +3 位作者 GAO Qinfeng DONG Shuanglin LI Xueqi XU Yuling 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1621-1634,共14页
Sea cucumber(Apostichopus japonicus)is an excellent model for investigating effects of bottom-dwellers on carbon mig-ration and transformation.However,the molecular mechanism of respiratory metabolism process variatio... Sea cucumber(Apostichopus japonicus)is an excellent model for investigating effects of bottom-dwellers on carbon mig-ration and transformation.However,the molecular mechanism of respiratory metabolism process variation caused by feeding rations is poorly understood.In this study,treatment groups set as 1%(about 0.63g),3%,and 7%of total body weight(named F1,F3 and F7 groups respectively).The potential molecular mechanisms behind the functions of respiratory tree and body wall were investigated by RNA-Seq.A total of 52411 expressed genes were identified from 89342 expressed transcripts.The results showed 759,254 and 334 genes were up-regulated,and 334,445 and 992 genes were down-regulated in respiratory tree of F1 vs.F3,F1 vs.F7 and F3 vs.F7,respectively.Meanwhile,2070,1601 and 896 genes were up-regulated,and 1303,1337 and 1144 genes were down-regulated in body wall between F1 vs.F3,F1 vs.F7 and F3 vs.F7,respectively.Differentially expressed genes were enriched in salivary secretion and ECM-receptor interaction pathways in respiratory tree,and in various types of N-glycan biosynthesis,ribosome and sphingolipid metabolism pathways in body wall.These results suggested respiratory tree and body wall were involved in activation of respiratory metabolisms in response to different feeding rations.Our research provided valuable knowledge for physiological differences in res-piratory metabolism. 展开更多
关键词 TRANSCRIPTOMICS Apostichopus japonicus feeding ration respiration metabolism
下载PDF
Accuracy of Mean Value of Central Venous Pressure from Monitor Digital Display: Influence of Amplitude of Central Venous Pressure during Respiration
17
作者 Meng-Ru Xu Wang-Lin Liu +4 位作者 Huai-Wu He Xiao-Li Lai Mei-Ling Zhao Da-Wei Liu Yun Long 《Chinese Medical Sciences Journal》 CAS CSCD 2023年第2期117-124,共8页
Background A simple measurement of central venous pressure(CVP)-mean by the digital monitor display has become increasingly popular.However,the agreement between CVP-mean and CVP-end(a standard method of CVP measureme... Background A simple measurement of central venous pressure(CVP)-mean by the digital monitor display has become increasingly popular.However,the agreement between CVP-mean and CVP-end(a standard method of CVP measurement by analyzing the waveform at end-expiration)is not well determined.This study was designed to identify the relationship between CVP-mean and CVP-end in critically ill patients and to introduce a new parameter of CVP amplitude(ΔCVP=CVPmax-CVPmin)during the respiratory period to identify the agreement/disagreement between CVP-mean and CVP-end.Methods In total,291 patients were included in the study.CVP-mean and CVP-end were obtained simultaneously from each patient.CVP measurement difference(|CVP-mean-CVP-end|)was defined as the difference between CVP-mean and CVP-end.TheΔCVP was calculated as the difference between the peak(CVPmax)and the nadir value(CVPmin)during the respiratory cycle,which was automatically recorded on the monitor screen.Subjects with|CVP-mean-CVP-end|≥2 mm Hg were divided into the inconsistent group,while subjects with|CVP-mean-CVP-end|2 mm Hg were divided into the consistent group.ResultsΔCVP was significantly higher in the inconsistent group[7.17(2.77)vs.5.24(2.18),P0.001]than that in the consistent group.There was a significantly positive relationship betweenΔCVP and|CVP-mean-CVP-end|(r=0.283,P 0.0001).Bland-Altman plot showed the bias was-0.61 mm Hg with a wide 95%limit of agreement(-3.34,2.10)of CVP-end and CVP-mean.The area under the receiver operating characteristic curves(AUC)ofΔCVP for predicting|CVP-mean-CVP-end|≥2 mm Hg was 0.709.With a high diagnostic specificity,usingΔCVP3 to detect|CVP-mean-CVP-end|lower than 2mm Hg(consistent measurement)resulted in a sensitivity of 22.37%and a specificity of 93.06%.UsingΔCVP8 to detect|CVP-mean-CVPend|8 mm Hg(inconsistent measurement)resulted in a sensitivity of 31.94%and a specificity of 91.32%.Conclusions CVP-end and CVP-mean have statistical discrepancies in specific clinical scenarios.ΔCVP during the respiratory period is related to the variation of the two CVP methods.A highΔCVP indicates a poor agreement between these two methods,whereas a lowΔCVP indicates a good agreement between these two methods. 展开更多
关键词 central venous pressure monitor digital display monitor cursor-line display respiration
下载PDF
Heartbeat and Respiration Rate Prediction Using Combined Photoplethysmography and Ballisto Cardiography
18
作者 Valarmathi Ramasamy Dhandapani Samiappan RRamesh 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1365-1380,共16页
Owing to the recent trends in remote health monitoring,real-time appli-cations for measuring Heartbeat Rate and Respiration Rate(HARR)from video signals are growing rapidly.Photo Plethysmo Graphy(PPG)is a method that ... Owing to the recent trends in remote health monitoring,real-time appli-cations for measuring Heartbeat Rate and Respiration Rate(HARR)from video signals are growing rapidly.Photo Plethysmo Graphy(PPG)is a method that is operated by estimating the infinitesimal change in color of the human face,rigid motion of facial skin and head parts,etc.Ballisto Cardiography(BCG)is a non-surgical tool for obtaining a graphical depiction of the human body’s heartbeat by inducing repetitive movements found in the heart pulses.The resilience against motion artifacts induced by luminancefluctuation and the patient’s mobility var-iation is the major difficulty faced while processing the real-time video signals.In this research,a video-based HARR measuring framework is proposed based on combined PPG and BCG.Here,the noise from the input video signals is removed by using an Adaptive Kalmanfilter(AKF).Three different algorithms are used for estimating the HARR from the noise-free input signals.Initially,the noise-free sig-nals are subjected to Modified Adaptive Fourier Decomposition(MAFD)and then to Enhanced Hilbert vibration Decomposition(EHVD)andfinally to Improved Var-iation mode Decomposition(IVMD)for attaining three various results of HARR.The obtained values are compared with each other and found that the EHVD is showing better results when compared with all the other methods. 展开更多
关键词 Heartbeat rate and respiration rate PHOTOPLETHYSMOGRAPHY BALLISTOCARDIOGRAPHY adaptive kalmanfilter
下载PDF
Interannual Variation in Terrestrial Ecosystem Carbon Fluxes in China from 1981 to 1998 被引量:35
19
作者 曹明奎 陶波 +2 位作者 李克让 邵雪梅 Stephen D PRIENCE 《Acta Botanica Sinica》 CSCD 2003年第5期552-560,共9页
A dynamic biogeochemical model was used to estimate the responses of China's terrestrial net primary productivity (NPP), soil heterotrophic respiration (HR) and net ecosystem productivity (NEP) to changes in clima... A dynamic biogeochemical model was used to estimate the responses of China's terrestrial net primary productivity (NPP), soil heterotrophic respiration (HR) and net ecosystem productivity (NEP) to changes in climate and atmospheric CO2 from 1981 to 1998. Results show that China's total NPP varied between 2.89 and 3.37 Gt C/a and had an increasing trend by 0.32% per year, HR varied between 2.89 and 3.21 Gt C/a and grew by 0.40% per year, Annual NEP varied between -0.32 and 0.25 Gt C but had no statistically significant interannual trend. The positive mean NEP indicates that China's terrestrial ecosystems were taking up carbon with a total carbon sequestration of 1.22 Gt C during the analysis period. The terrestrial NEP in China related to climate and atmospheric CO2 increases accounted for about 10% of the world's total and was similar to the level of the United States in the same period. The mean annual NEP for the analysis period was near to zero for most of the regions in China, but significantly positive NEP occurred in Northeast China Plain, the southeastern Xizang (Tibet) and Huang-Huai-Hai Plain, and negative NEP occurred in the Da Hinggan Mountains, Xiao Hinggan Mountains, Loess Plateau and Yunnan-Guizhou Plateau. China's climate at the time was warm and dry relative to other periods, so the estimated NEP is probably lower than the average level. China's terrestrial NEP may increase if climate becomes wetter but is likely to continue to decrease if the present warming and drying trend sustains. 展开更多
关键词 China net primary productivity (NPP) soil heterotrophic respiration (HR) net ecosystem productivity (NEP) climate change
下载PDF
Correlations Between Plant Biomass and Soil Respiration in a Leymus chinensis Community in the Xilin River Basin of Inner Mongolia 被引量:13
20
作者 李凌浩 韩兴国 +7 位作者 王其兵 陈全胜 张焱 杨晶 闫志丹 李鑫 白文明 宋世环 《Acta Botanica Sinica》 CSCD 2002年第5期593-597,共5页
This paper reports on two years of measurement of soil respiration and canopy-root biomass in a Leymus chinensis community in the Xilin River basin of Inner Mongolia. Correlations between components of plant biomass a... This paper reports on two years of measurement of soil respiration and canopy-root biomass in a Leymus chinensis community in the Xilin River basin of Inner Mongolia. Correlations between components of plant biomass and soil respiration rates were examined. From respiration data based on CO2 uptake by NaOH and corresponding root biomass values for each run of 10 plots, a linear regression of CO2 evolution rates on root dry weights has been achieved for every ten days. By applying the approach of extrapolating the regressive line to zero root biomass, the proportion of the total soil respiration flux that is attributable to live root respiration was estimated to be about 27% on average, ranging from 14% to 39% in the growing season in 1998. There were no evident relations between the total canopy biomass or root biomass and CO2 evolution rates, but a significant exponential relation did exist between tire live-canopy biomass and CO2 evolution rates. 展开更多
关键词 root respiration total soil respiration temperate grassland plant biomass
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部