期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Alternative Splicing and Differential Expression of Two Transcripts of Nicotine Adenine Dinucleotide Phosphate Oxidase B Gene from Zea mays 被引量:6
1
作者 Fan Lin Yun Zhang Ming-Yi Jiang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第3期287-298,共12页
With the exception of rice, little is known about the existence of respiratory burst oxidase homolog (rboh) gene in cereals. The present study reports the cloning and analysis of a novel rboh gene, termed ZmrbohB, f... With the exception of rice, little is known about the existence of respiratory burst oxidase homolog (rboh) gene in cereals. The present study reports the cloning and analysis of a novel rboh gene, termed ZmrbohB, from maize (Zea mays L.). The full-length cDNA of ZmrbohB encodes a 942 amino acid protein containing all of the respiratory burst oxidase homolog catalytically critical motifs. Alternative splicing of ZmrbohB has generated two transcript isoforms, ZmrbohB-α and -β. Spliced transcript ZmrbohB-β retains an unspliced intron 11 that carries a premature termination codon and probably leads to nonsense-mediated mRNA decay. Expression analysis showed that two splice isoforms were differentially expressed in various tissues and at different developmental stages, and the major product was ZmrbohB-e. The transcripts of ZmrbohB-α accumulated markedly when the maize seedlings were subjected to various abiotic stimuli, such as wounding, cold (4℃), heat (40℃), UV and salinity stress. In addition, several abiotic stimuli also affected the alternative splicing pattern of ZmrbohB except wounding. These results provide new insight into roles in the expression regulation of plant rboh genes and suggest that ZrnrbohB gene may play a role in response to environmental stresses. 展开更多
关键词 abiotic stress alternative splicing respiratory burst oxidase homolog Zea mays.
原文传递
Antepenultimate residue at the C-terminus of NADPH oxidase RBOHD is critical for its function in the production of reactive oxygen species in Arabidopsis 被引量:1
2
作者 Qiu-ying LI Ping LI +2 位作者 Nang MYINT PHYU SIN HTWE Ke-ke SHANGGUAN Yan LIANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2019年第9期713-729,共17页
Production of reactive oxygen species(ROS)is a conserved immune response primarily mediated by NADPH oxidases(NOXs),also known in plants as respiratory burst oxidase homologs(RBOHs).Most microbe-associated molecular p... Production of reactive oxygen species(ROS)is a conserved immune response primarily mediated by NADPH oxidases(NOXs),also known in plants as respiratory burst oxidase homologs(RBOHs).Most microbe-associated molecular patterns(MAMPs)trigger a very fast and transient ROS burst in plants.However,recently,we found that lipopolysaccharides(LPS),a typical bacterial MAMP,triggered a biphasic ROS burst.In this study,we isolated mutants defective in LPS-triggered biphasic ROS burst(delt)in Arabidopsis,and cloned the DELT1 gene that was shown to encode RBOHD.In the delt1-2 allele,the antepenultimate residue,glutamic acid(E919),at the C-terminus of RBOHD was mutated to lysine(K).E919 is a highly conserved residue in NADPH oxidases,and a mutation of the corresponding residue E568 in human NOX2 has been reported to be one of the causes of chronic granulomatous disease.Consistently,we found that residue E919 was indispensable for RBOHD function in the MAMP-induced ROS burst and stomatal closure.It has been suggested that the mutation of this residue in other NADPH oxidases impairs the protein’s stability and complex assembly.However,we found that the E919K mutation did not affect RBOHD protein abundance or the ability of protein association,suggesting that the residue E919 in RBOHD might have a regulatory mechanism different from that of other NOXs.Taken together,our results confirm that the antepenultimate residue E is critical for NADPH oxidases and provide a new insight into the regulatory mechanisms of RBOHD. 展开更多
关键词 Reactive oxygen species(ROS) NADPH oxidase(NOX) Microbe associated molecular pattern(MAMP) Lipopolysaccharides(LPS) respiratory burst oxidase homolog D(RBOHD)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部