The driving necessities of cost reduction and the need to develop fields at ever increasing water depths have led to the use of floating structures. Among these structures are the Floating Production Storage and Offlo...The driving necessities of cost reduction and the need to develop fields at ever increasing water depths have led to the use of floating structures. Among these structures are the Floating Production Storage and Offloading (FPSO) units whose motion analysis is considered in this paper. In actual environmental condition, it is required to accurately determine or predict large amplitude motion of the FPSO before any offshore operation. This paper seeks to present a detailed method of computing the Response Amplitude Operator(s) (RAOs) for the six (6) degrees of freedom using ANSYS AQWA. The results indicate for Heave motion a tendency for the heave peak value to move slightly higher dimensionless encounter-frequency as the wave moves from Head sea to Beam sea direction. A MATLAB source code was developed to validate the result for heave motion at head sea. Although a small difference in predicted heave motion occurred, it is pertinent to note that the comparisons between results generated in the MATLAB program and ANSYS AQWA demonstrate generally good agreement, and the roll response of the FPSO is noted to be critical.展开更多
Air floating transport is one of the key construction technologies of bucket foundation.The influences of draft,water depth and bucket spacing on the motion response characteristics of tetrapod bucket foundation(TBF)d...Air floating transport is one of the key construction technologies of bucket foundation.The influences of draft,water depth and bucket spacing on the motion response characteristics of tetrapod bucket foundation(TBF)during air-floating transportation were studied by models tests.The results showed that with the increase of draft,the natural periods of heave motion increased,while the maximum amplitudes of oscillating motion decreased.The maximum amplitudes of heave motion decreased while pitch motion increased with the increasing of water depth;further,the period range of oscillating amplitude close to the maximum amplitude was expanded due to shallow water effect.With increasing bucket spacing,the maximum amplitudes of heave motion first increase and then decreased,whereas the maximum amplitudes of pitch motion decreased.Therefore,the favorable air-floating transportation performance can be achieved by choosing a larger bucket spacing under the condition of meeting the design requirements and reducing the draft under shallower water.展开更多
The structure of an air-floating caisson is suitable for the major structure of caisson-type artificial islands.Thus,it has been rapidly developed and widely used in the exploration and development of oil and gas fiel...The structure of an air-floating caisson is suitable for the major structure of caisson-type artificial islands.Thus,it has been rapidly developed and widely used in the exploration and development of oil and gas fields in shallow sea and intertidal zones.Air-floating transportation technology is one of the key technologies employed in this structure.In this paper,the factors influencing the dynamic response characteristics of air-floating caisson with multi-compartments(AFCMC)were studied using model tests.The length and the height of each air-floating structure in the model were 1.0 and 0.1 m,respectively.In addition,the 1:100 models with 6,8,and 10 compartments under regular waves were tested in the wave flume,respectively.In the experiments,the respective water depths were set at 0.2,0.3,and 0.4 m,and the corresponding drafts were 0.05,0.06,and 0.07 m.Results show that with the increase of draft,the heave natural period increased and the maximum amplitude of the heave motion decreased.Meanwhile,the pitch motion decreased at 6 and 8 compartments and increased at 10 compartments.As the water depth increased,the maximum amplitude and amplitude change of heave and pitch motions first increased and then decreased.However,several amplitudes close to the maximum amplitude appeared in the measured period at shallower water depth,thereby indicating the vertical movements of the structure enhanced under shallow water.The increase in the number of compartments reduced the vertical movements under 6.0 m draft,but it increased the vertical movements under 5.0 and 7.0 m draft.Thus,increasing the number of compartments has a limited capacity to improve the motion performance of the structure.展开更多
Tendons vertically moor Tension-Leg Platforms (TLPs), thus, a deep understanding of physical tendon stresses requires the determination of the total axial deformation of the tendons, which is a combination of the he...Tendons vertically moor Tension-Leg Platforms (TLPs), thus, a deep understanding of physical tendon stresses requires the determination of the total axial deformation of the tendons, which is a combination of the heave, pitch, and surging responses. The vertical motion of the lateral sides of the TLP is coupled with surge and constitutes a portion of the pitch motion. Tendons are connected to the sides of the TLP; hence, the total displacement of the lateral sides is related to the total deformation of the tendons and the total axial stress. Therefore, investigating the total vertical response at the sides of the TLP is essential. The coupling between various degrees of freedom is not considered in the Response Amplitude Operator (RAO). Therefore, in frequency domain analysis, the estimated vertical RAO is incomplete. Also, in the time domain, only the heave motion at the center of TLP is typically studied; this problem needs to be addressed. In this paper, we investigate the portion of the pitch motion in the vertical response at the sides of the TLP in both the frequency and time domains. Numerical results demonstrate a significant effect of the pitch motion in the vertical motion of the edges of the TLP in some period ranges.展开更多
基于现有的渤海浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)实测数据,开展海洋核动力平台(Marine Nuclear Power Platform,MNPP)定位系统多体动力特性分析。建立MNPP定位系统的多刚体动力学模型,通过MNPP与...基于现有的渤海浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)实测数据,开展海洋核动力平台(Marine Nuclear Power Platform,MNPP)定位系统多体动力特性分析。建立MNPP定位系统的多刚体动力学模型,通过MNPP与渤海某FPSO的响应幅值算子(Response Amplitude Operator,RAO),计算FPSO船体实测数据与MNPP响应的比例系数;根据FPSO船体实测数据计算MNPP六自由度数据,并采用经验模态分解(Empirical Mode Decomposition,EMD)方法保留原始数据的波频成分,在此基础上计算定位系统的系泊回复能力和各铰节点的受力行为。通过与FPSO软刚臂系泊系统受力状态进行对比分析,验证MNPP定位系统在实测海况下设计的合理性。可为MNPP系泊结构设计和安全运行提供科学的分析手段。展开更多
文摘The driving necessities of cost reduction and the need to develop fields at ever increasing water depths have led to the use of floating structures. Among these structures are the Floating Production Storage and Offloading (FPSO) units whose motion analysis is considered in this paper. In actual environmental condition, it is required to accurately determine or predict large amplitude motion of the FPSO before any offshore operation. This paper seeks to present a detailed method of computing the Response Amplitude Operator(s) (RAOs) for the six (6) degrees of freedom using ANSYS AQWA. The results indicate for Heave motion a tendency for the heave peak value to move slightly higher dimensionless encounter-frequency as the wave moves from Head sea to Beam sea direction. A MATLAB source code was developed to validate the result for heave motion at head sea. Although a small difference in predicted heave motion occurred, it is pertinent to note that the comparisons between results generated in the MATLAB program and ANSYS AQWA demonstrate generally good agreement, and the roll response of the FPSO is noted to be critical.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.52171274)the National Key Research and Development Project(Grant No.2018YFC0810402)+2 种基金Chongqing Elite Innovation and Entrepreneurship Demonstration Team(Grant No.CQYC201903204)Chongqing Special Post-Doctoral Science Foundation(Grant No.XM2019)the State Key Laboratory of Hydraulic Engineering Simulation and Safety(Tianjin University)(Grant No.HESS-12).
文摘Air floating transport is one of the key construction technologies of bucket foundation.The influences of draft,water depth and bucket spacing on the motion response characteristics of tetrapod bucket foundation(TBF)during air-floating transportation were studied by models tests.The results showed that with the increase of draft,the natural periods of heave motion increased,while the maximum amplitudes of oscillating motion decreased.The maximum amplitudes of heave motion decreased while pitch motion increased with the increasing of water depth;further,the period range of oscillating amplitude close to the maximum amplitude was expanded due to shallow water effect.With increasing bucket spacing,the maximum amplitudes of heave motion first increase and then decreased,whereas the maximum amplitudes of pitch motion decreased.Therefore,the favorable air-floating transportation performance can be achieved by choosing a larger bucket spacing under the condition of meeting the design requirements and reducing the draft under shallower water.
基金support pro-vided by the National Science Foundation of China(No.52171274)the National Key Research and Development Project(No.2018YFC0810402)+2 种基金the Chongqing Elite In-novation and Entrepreneurship Demonstration Team(No.CQYC201903204)the Chongqing Special Post-doctoral Science Foundation(No.XM2019)the State Key Laboratory of Hydraulic Engineering Simulation and Safety(Tianjin University)(No.HESS-12).
文摘The structure of an air-floating caisson is suitable for the major structure of caisson-type artificial islands.Thus,it has been rapidly developed and widely used in the exploration and development of oil and gas fields in shallow sea and intertidal zones.Air-floating transportation technology is one of the key technologies employed in this structure.In this paper,the factors influencing the dynamic response characteristics of air-floating caisson with multi-compartments(AFCMC)were studied using model tests.The length and the height of each air-floating structure in the model were 1.0 and 0.1 m,respectively.In addition,the 1:100 models with 6,8,and 10 compartments under regular waves were tested in the wave flume,respectively.In the experiments,the respective water depths were set at 0.2,0.3,and 0.4 m,and the corresponding drafts were 0.05,0.06,and 0.07 m.Results show that with the increase of draft,the heave natural period increased and the maximum amplitude of the heave motion decreased.Meanwhile,the pitch motion decreased at 6 and 8 compartments and increased at 10 compartments.As the water depth increased,the maximum amplitude and amplitude change of heave and pitch motions first increased and then decreased.However,several amplitudes close to the maximum amplitude appeared in the measured period at shallower water depth,thereby indicating the vertical movements of the structure enhanced under shallow water.The increase in the number of compartments reduced the vertical movements under 6.0 m draft,but it increased the vertical movements under 5.0 and 7.0 m draft.Thus,increasing the number of compartments has a limited capacity to improve the motion performance of the structure.
文摘Tendons vertically moor Tension-Leg Platforms (TLPs), thus, a deep understanding of physical tendon stresses requires the determination of the total axial deformation of the tendons, which is a combination of the heave, pitch, and surging responses. The vertical motion of the lateral sides of the TLP is coupled with surge and constitutes a portion of the pitch motion. Tendons are connected to the sides of the TLP; hence, the total displacement of the lateral sides is related to the total deformation of the tendons and the total axial stress. Therefore, investigating the total vertical response at the sides of the TLP is essential. The coupling between various degrees of freedom is not considered in the Response Amplitude Operator (RAO). Therefore, in frequency domain analysis, the estimated vertical RAO is incomplete. Also, in the time domain, only the heave motion at the center of TLP is typically studied; this problem needs to be addressed. In this paper, we investigate the portion of the pitch motion in the vertical response at the sides of the TLP in both the frequency and time domains. Numerical results demonstrate a significant effect of the pitch motion in the vertical motion of the edges of the TLP in some period ranges.
文摘基于现有的渤海浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)实测数据,开展海洋核动力平台(Marine Nuclear Power Platform,MNPP)定位系统多体动力特性分析。建立MNPP定位系统的多刚体动力学模型,通过MNPP与渤海某FPSO的响应幅值算子(Response Amplitude Operator,RAO),计算FPSO船体实测数据与MNPP响应的比例系数;根据FPSO船体实测数据计算MNPP六自由度数据,并采用经验模态分解(Empirical Mode Decomposition,EMD)方法保留原始数据的波频成分,在此基础上计算定位系统的系泊回复能力和各铰节点的受力行为。通过与FPSO软刚臂系泊系统受力状态进行对比分析,验证MNPP定位系统在实测海况下设计的合理性。可为MNPP系泊结构设计和安全运行提供科学的分析手段。